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Abstract

The ability of quantum dots to confine single charges at discrete energy levels

makes them a promising platform for novel electronic and optoelectronic devices.

Self-assembled quantum dots are of considerable interest because their size, shape,

and material can be controlled during growth. These properties influence the con-

finement potential, thereby controlling the energy levels of the dot. However, the

method of growth does not allow for positioning of the quantum dots which end

up randomly distributed over the sample surface, making it difficult for lithographic

techniques to access the quantum dots to perform either charge transport or charge

sensing measurements so that single dot properties can be measured.

An atomic force microscope (AFM) can be used to spatially access individual

dots, and by applying a voltage between cantilever tip and back-electrode, the energy

levels of individual dots can be measured as electrons are added to the dot one-by-

one in the Coulomb blockade regime. The oscillating cantilever in these experiments

is responsible for both loading the dots through electrical gating and also detecting

tunneling events through a change in cantilever resonance frequency and/or cantilever

dissipation.

We use an AFM to measure the energy levels in few electron self-assembled InAs

quantum dots. The charging energy, level spacing, and shell structure of single dots

are extracted experimentally. We compare our results to a theoretical model that
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describes in detail the mechanism behind the dissipative electrostatic interaction due

to the tunneling single-electrons.

Examples of the electrostatic influence of the environment on the dots are also

presented, and a method for using an AFM for characterizing electrostatic noise

is demonstrated. Charge fluctuations are known to compromise the operation of

electronic devices, especially for electrical components which are built in the micron

and nano regime. Super bandgap irradiation leads to generation-recombination noise

over the sample surface but not over the self-assembled quantum dots. We measure

the generation-recombination noise with an AFM and compare the noise on and off

the dot to show sub-20 nm spatial resolution, demonstrating the ability of AFM for

characterizing noise arising from charge fluctuations within the sample with high

spatial resolution.
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Résumé

La propriété qu’ont les points quantiques de confiner des charges élémentaires

à des niveaux discrets d’énergie en font une plate-forme prometteuse pour la con-

ception de nouveaux appareils électroniques et opto-électroniques. Les points quan-

tiques auto-assemblés sont d’autant plus intéressants puisque leur taille, forme et

matériau peuvent être contrôlés lors de leur croissance. Ces propriétés influencent le

potentiel de confinement modifiant ainsi les niveaux d’énergies du point quantique.

Toutefois, cette méthode de croissance ne permet pas de positionner les points quan-

tiques et ceux-ci se retrouvent distribués aléatoirement sur la surface de l’échantillon.

Cela rend difficile l’accès aux points quantiques par des techniques lithographiques

pour effectuer des mesures de transport ou de détection de charge permettant d’en

déterminer les propriétés.

Un microscope à force atomique (AFM) permet d’accéder spatialement à des

points quantiques individuels et en appliquant une tension électrique entre la pointe

du cantilever et une électrode arrière, leurs niveaux d’énergies peuvent être mesurés

au fur et à mesure que des électrons sont ajoutés dans un régime de blocage de

Coulomb. Dans ces expériences, le cantilever oscillant est responsable simultanément

du chargement des points par l’application d’une tension de grille et de la détection

du passage d’électron par � effet tunnel � par un changement de fréquence de

résonance et/ou de dissipation du cantilever.
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Nous utilisons un AFM pour mesurer les niveaux d’énergie dans des points

quantiques à quelques électrons d’InAs auto-assemblés. L’énergie de chargement,

l’espacement des niveaux et la configuration électronique de points individuels sont

obtenus expérimentalement. Nous comparons nos résultats à un modèle théorique

qui décrit en détail le mécanisme derrière l’interaction électrostatique dissipative due

au passage d’électrons par � effet tunnel �.

Des exemples de l’influence électrostatique de l’environnement sur les points

quantiques sont aussi présentés, ainsi qu’une méthode pour utiliser l’AFM pour car-

actériser le bruit électrostatique. Les fluctuations de charge sont connues pour com-

promettre le bon fonctionnement des appareils électroniques et particulièrement des

composants micro et nanométriques. L’irradiation de larges bandes d’énergie inter-

dites produit un bruit de génération et de recombinaison à la surface de l’échantillon,

mais pas sur les points quantiques auto-assembls. Nous mesurons ce bruit avec un

AFM et comparons les résultats obtenus sur la surface du point quantique et en de-

hors en démontrant qu’une résolution spatiale inférieure à 20 nm est réalisée. Nous

démontrons ainsi qu’un AFM permet de caractériser le bruit provenant des fluctua-

tions de charge d’un échantillon avec une haute résolution spatiale.
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Statement Of Originality

This thesis focuses on using electrostatic force microscopy to characterize the

electronic properties of localized states (quantum dots and charge traps) at the

nanoscale. The research comprised within this thesis which has led to an advance-

ment in the field is summarized below:

1. Spatial variations of generation-recombination noise was demonstrated using

an atomic force microscope.

Published [L. Cockins, Y. Miyahara, P. Grutter PRB 79 (12) 121309 (2009)].

This article was a Rapid Communication in PRB and was also selected as Editor’s

Choice.

2.

• Energy level spectroscopy of self-assembled InAs dots is performed using an

atomic force microscope.

• Shell degeneracy of quantum dots was verified experimentally using a temper-

ature dependence experiment.

• Images captured showing changes (reversible and time dependent) in quantum

dot confinement potentials using an atomic force microscope.

• Coupling between multi-dot complexes is characterized using the atomic force

microscope images.
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Published [L. Cockins, Y. Miyahara, S. D. Bennett, A. A. Clerk, S. Studenikin,

P. Poole, A. Sachrajda and P. Grutter. PNAS 107 (21) 9496 (2010)]

3. The ability to verify the shell structure of the quantum dots by measur-

ing the dot energy levels with large cantilever oscillation amplitudes was verified

experimentally.

Published [S. D. Bennett, L. Cockins, Y. Miyahara, P. Grütter and A. A. Clerk.

PRL 104 (1) 017203 (2010)]

4. The ability to manipulate the confinement potential of the quantum dot is

demonstrated in [L. Cockins, Y. Miyahara, P. Grutter PRB 79 (12) 121309 (2009)]

by applying a voltage near the dot, and in this thesis by depositing charge near the

dot.
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Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Statement Of Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Quantum Dot Physics . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Coulomb Blockade . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Cantilever Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Frequency Modulation Mode AFM . . . . . . . . . . . . . . 21
2.2.2 The Tip-Sample Interaction Force . . . . . . . . . . . . . . 23
2.2.3 Dissipation Measurements . . . . . . . . . . . . . . . . . . 25

2.3 Conservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Repulsive forces . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Van Der Waals Force . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Electrostatic Force . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Nonconservative And Conservative Forces Of Single-Electron
Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Weak Coupling For A Non-Degenerate Level . . . . . . . . 31
2.4.2 Weak Coupling For A Degenerate Level . . . . . . . . . . . 35
2.4.3 Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 Real-Time Measurement Of Electron Loading . . . . . . . . 40

3 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



3.1 Introduction to Low Temperature AFM . . . . . . . . . . . . . . . 45
3.2 AFM Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 AFM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Experimental realization of QDs: Sample Preparation . . . . . . . 54

4 Quantum Dot Energy Level Spectroscopy . . . . . . . . . . . . . . . . . 57

4.1 Coulomb Blockade AFM Images . . . . . . . . . . . . . . . . . . . 57
4.1.1 Qualitative Features of Dissipation Images . . . . . . . . . 60

4.2 Electron Addition Spectra . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Obtaining the lever arm, α . . . . . . . . . . . . . . . . . . 68
4.2.2 Calculating EC From α . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Determining the Shell Structure By Temperature . . . . . . 77
4.2.4 The Tunneling Rate, Γ . . . . . . . . . . . . . . . . . . . . 80

4.3 Multiple Quantum Dot Complexes . . . . . . . . . . . . . . . . . . 81
4.3.1 Quantifying Dot Coupling . . . . . . . . . . . . . . . . . . 83
4.3.2 Converting AFM Images to Charge Stability Diagrams . . 86

4.4 Verifying the Shell Structure Via Strong Coupling Measurements . 86

5 The Quantum Dot Environment . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Generation-Recombination Noise In Semiconductors . . . . . . . . 89
5.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2 GR-Noise Imaging and Spectra . . . . . . . . . . . . . . . . 94
5.1.3 Time Constant For Band-Bending . . . . . . . . . . . . . . 100
5.1.4 Different Laser Powers and Kelvin Probe Force Microscopy

For Surface Photovoltage Measurements . . . . . . . . . 102

6 Outlook and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Outlook: Furthering our Understanding . . . . . . . . . . . . . . . 104
6.1.1 Magnetic Field For Verifying Shell Structure . . . . . . . . 104
6.1.2 Excited State Spectroscopy . . . . . . . . . . . . . . . . . . 107
6.1.3 Additional Dissipation Features . . . . . . . . . . . . . . . 109
6.1.4 Coupled Quantum Dots . . . . . . . . . . . . . . . . . . . . 111
6.1.5 Other Quantum Dot Samples . . . . . . . . . . . . . . . . . 114

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.1 Quantum Dot Spectroscopy . . . . . . . . . . . . . . . . . . 116
6.2.2 Quantum Dot Environment . . . . . . . . . . . . . . . . . . 117

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xiii



List of Figures

Figure page

2–1 (a) A schematic of the sample setup showing the oscillating cantilever
(with pyramidal tip) above a quantum dot. Arrows indicate the
path taken by tunneling electrons. (b) Equivalent circuit diagram
of setup. (c) Band diagram of sample with a negative bias votlage,
VB, applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2–2 Plot of the dissipation and resonance frequency shift response versus
ω/Γ with normalized units using Eq. 2.34 and Eq. 2.35. . . . . . . 34

2–3 The asymmetry in the number of ways to add and remove electrons
leads to a shift in the location of maximal tunneling (i.e. a shift
in the Coulomb blockade peak maximum). This dot has six energy
levels, with two in the first shell and four in the second. The gray
region on the right of each diagram is the Fermi-population of the
2DEG. The black circles are electrons that are already on a dot
level (solid black line) and the dashed circles are electrons that
will be added. The dashed line is where the non-degenerate energy
level would line up with the 2DEG energy levels to have maximal
tunneling. These alignments for degenerate levels are shifted due
to the asymmetry between the number of ways to add or remove
electrons. Image courtesy of Steven Bennett. . . . . . . . . . . . . . 37

2–4 The first peak in the dot is theoretically calculated for several oscil-
lation amplitudes. Large oscillation amplitudes (i.e. Aa � kBT
enhance the asymmetric peak lineshape. Image courtesy of Steven
Bennett. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiv



3–1 The creep of the piezotube in the z-direction is plotted as a function of
file number at 4.5 K. We were collecting approximately 350 images
over the same location for 1.5 hours and when the frequency shift
showed a noticeable change, the height was readjusted (this is the
reason for the step-like appearance). In 1.5 hours, the z-creep was
approximately 1.5 nm. After 1.5 hours the creep is starting to
stabilize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3–2 An actual photo of the cryogenic microscope is shown beside a
schematic which labels the relevant features of the microscope.
The bottom plate in the schematic is 5 x 52 mm. The different
components of the body are slightly rotated in the schematic in
order to more clearly label the components. . . . . . . . . . . . . . 49

3–3 Power spectral density of the frequency shift of the cantilever while
approached to the sample surface, collected over a 300 s time
window and consisting of 300,000 points, showing several peaks
at low frequency in the data taken without the vibration isolation
table. Data is from two different experiments, and the noise at
higher frequencies with the table may be due to experimental
differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3–4 Block diagram for self-oscillation mode. The left-box isolates the
components for maintaining the oscillation amplitude (the AGC),
while the right contains the components used for frequency tracking
(the PLL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3–5 Schematic of layers of the sample with the biased AFM cantilever. . . 55

4–1 Dissipation images showing sequential loading of electrons into a
quantum dot through increasing the bias voltage. The shape of
the InAs island is outlined in the first image, with the taller region
also outlined by a more closely spaced dashed line. This data was
collected at 4.5 K, with 0.8 nm oscillation amplitude. These images
took approximately 20 min. to complete. The scalebar is 20 nm.
All images share the same colorbar with scale 0 − 0.85 Hz for all
except the last image, with scale 0 − 2 Hz. The last image was
taken at a later time in the experiment and so the image is slightly
shifted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xv



4–2 Comparison of InAs dot topography image (a) to the constant height
images of the frequency shift (b) and dissipation (c). (b) and
(c) were taken simultaneously. Approximate locations of dots are
marked with X’s in (a). (a) was taken at T = 77 K, ∆ω/2π =
−9.4 Hz, a = 1.6 nm and VB = −0.35 V. (b) and (c) were taken
at T = 4.5 K, with a = 0.4 nm, VB = −8.0 V, and z0 ∼ 19 nm.
Scalebar 20 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4–3 Large scan range AFM topography (a) and dissipation (b) images
taken simultaneously with VB = -4 V, ∆ω/2π = -29 Hz, and a =
8 nm at 77 K. The correlation between dissipation features and
quantum dots is clear in this image. Notice that taller dots tend to
have less pronounced dissipation. Scalebar 200 nm. . . . . . . . . 59

4–4 Dissipation images taken in constant height mode with VB = -8 V
and a = 1.6 nm (a), 0.8 nm (b) and 0.4 nm (c) at 4.5 K. As the
cantilever oscillation amplitude is reduced, the rings become more
narrow. All of these oscillation amplitudes are large enough to
broaden (and reduce the amplitude of) the rings. Larger oscillation
amplitudes can lead to the overlap of rings, which increases the
dissipation as more tunneling occurs. Scalebar is 20 nm. . . . . . . 61

4–5 Topography of InAs island (a) and corresponding dissipation images
taken in constant height mode at 77 K (b), and 4.5 K (c). At
both temperatures, this dot seems to be affected by changes in the
electrostatic background. In (b) the number of electrons in the dot
is fluctuating by one, as observed by the streaky outer ring. In
(c), while the cantilever is scanning in the upwards direction, the
energy level of the dot seems to shift suddenly below the energy
level of the 2DEG. Also observed in (c) is the first streaky ring of
another dot. Perhaps this new dot, which seems to have a shallow
confinement potential, was the cause of the streaky ring in (b).
Notice how in (c) the two observed dots roughly correlate with the
island structure in (a). . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvi



4–6 Dissipation images taken in constant height mode at 4.5 K with
0.8 nm oscillation amplitude. The slow scan direction is upwards
in all four images. In (a) a sudden and dramatic switch of the
confinement potential of an isolated quantum dot (the same dot as
shown in Fig. 4–1) results in a double quantum dot (VB = −8.0 V).
The double dot is confirmed in (b) at VB = −9.0 V. To reverse the
change, we image with a positive bias voltage over the same region
(c) (VB = +6.8 V). In the following image, we confirm that the dot
has returned to its original, single dot, confinement potential, by
imaging with VB = −8.0 V (d). . . . . . . . . . . . . . . . . . . . . 63

4–7 The upper isolated dot shown in (a) undergoes a switch in confinement
potential in (b). The new shape of the dot is confirmed in (c). Note
how both the energy levels of the dot with respect to the 2DEG
and the shape of the dot are changed. The lower dot in the images,
however, is unaffected. In (d) the rings from (a) are overlaid on (c)
and it is clear that the lower dot has not changed. All images were
taken with VB = −8.0 V at 4.5 K using constant height mode. This
change also was reversed by imaging with a positive VB as in Fig. 4–6 65

4–8 The dissipation image in (a) was taken before a tip crash and (b)
afterwards. The confinement potential is obviously affected by the
charge deposit at the crash site [lower left of the image in (b)]. In
(c) we zoom out slightly to inspect the crash site. The voltages
in the first three images are: -6 V, -6.5 V and -6.7 V. In (c) the
dissipation is lower because the cantilever scanned the image more
quickly. The dissipation images are shown in black and white
here to be able to distinguish more easily between the rings and
the increased dissipation resulting from the crash site. From the
Kelvin Probe Force Microscopy images of the topography (d) and
contact potential difference (e) taken simultaneously, we see that
the tip crash created a depression in the sample that is charged.
The Kelvin Probe Force Microscope images applied an additional
ac-voltage to the tip of 0.6 Vrms, at a 1 kHz modulation, and the
lock-in time constant was 3 ms. Scalebar in all images is 20 nm.
Oscillation amplitude was 4 nm. . . . . . . . . . . . . . . . . . . . 67

4–9 (a) The potential and (b) electric field lines of a 20 nm radius tip with
40◦ cone angle and 20 nm tip-sample gap. (a) is 550 x 550 nm, and
(b) is 60 x 40 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xvii



4–10 Change in α for different tip cone angles (a) and radii (b). In (a) the
tip radius is 20 nm and in (b) the tip cone angle is 40◦. For (a) and
(b) the tip-sample gap is 20 nm. The change in α along the surface
for different tip-sample distances (c) for a tip with 20 nm radius
and 40◦ cone angle. In (d) the value in (c) directly underneath the
tip is plotted to show how α changes with tip-sample gap. . . . . . 71

4–11 Residual plot of the dissipation compared to theory. Data was taken
over an isolated quantum dot at 30 K with a = 0.4 nm. . . . . . . 74

4–12 (a) Voltage spectra at different tip-sample gaps. (b) α(z0) from the
data in (a) with a linear fit. Data taken at 77 K. . . . . . . . . . . 74

4–13 (a) 2D plot over the isolated dot in Fig. 4–2 created by repeatedly
scanning over one line as a function of VB. From (a) we can
determine α(r)/α(r0) and, by knowing the separation in Coulomb
blockade peaks at r0, we can use this ratio to predict the positions
of the other rings as shown in (b) for one half of the image in (a).
In (b) we have used the change in the blue ring with distance to
predict the positions of the other rings with position. The predicted
locations are in black. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4–14 (a) The Coulomb blockade peaks of the first two electrons. Increasing
the temperature broadens the peaks which is explained well by the
theory (Eq. 2.38). (b) The separation between the first two peaks as
a function of temperature. (c) The separation between peaks 3 and
6 and peaks 4 and 5 as a function of temperature. (d) Separation
between the dissipation and frequency shift peak for the third peak
as a function of temperature with theoretical fit. . . . . . . . . . . . 78

4–15 The dissipation and frequency shift spectra taken simultaneously over
the isolated quantum dot at the top of Fig. 4–2. The parabolic
background of the frequency shift has been subtracted. The peak
widths are thermally limited for this spectra: T = 30 K, a = 0.4 nm. 81

xviii



4–16 Dissipation images taken over the same region containing three
quantum dots at -7.6 V (a) and -9.0 V (b) at 4.5 K. Images (b)
and (c) are identical. In (b) the anti-crossing of the first rings from
the upper and left quantum dots is circled and the anti-crossing
of the first rings from the right and left quantum dots is boxed.
The markings overlayed on (c) are showing the required distances
needed to use Eq. 4.1 as explained in the text. Note how the
distance between the first two rings is measured as close as possible
to the change in ring radius and is not taken as a constant value
over the whole dot. Scalebar is 20 nm. . . . . . . . . . . . . . . . . 83

4–17 Dissipation image shown in (a) is over the same three dots as in
Fig. 4–16(a)-(b), but at VB = -8.8 V. (b) By taking several images
over the same dots at different voltages and measuring the position
of a ring with voltage, the voltage falloff as a function of tip-dot
distance can be fitted to a line [this curve was deduced for the first
ring of the left dot in (a)]. The equation of this fit provides the
conversion from distances to voltage so that the stability diagram
with axes in Volts can be created (c). . . . . . . . . . . . . . . . . 85

4–18 (a) Three spectra at different oscillation amplitudes (in the strong
coupling regime), taken over the same dot, are compared to the
theoretically displayed thermally limited peaks in black (which
represents weak coupling). With increasing oscillation amplitude,
the peaks clearly skew away from the center of the shell. (b)
Comparison between strong coupling theory and data for the first
peak for different oscillation amplitudes. All data shown was taken
at 5 K. (b) is courtesy of Steven Bennett. . . . . . . . . . . . . . . 87

5–1 Schematic of the band bending of the InP sample. (a) Initially
bands are bent upwards due to negative charge at the surface, but
superbandgap irradiation leads to holes traveling to the surface
and recombining with negative charges to relax the bands. (b)
Generated charge pairs are trapped in the potential well of the
quantum dot where they recombine. . . . . . . . . . . . . . . . . . 91

xix



5–2 Schematic showing the cantilever positioned over the sample surface
and the two fiber optics. The 780 nm light shines on the surface,
while the 1550 nm light (invisible) shines onto the backside of the
cantilever for the interference signal for position detection. We
know that the cantilever does not block all of the light from this
laser, as the resistance of the 2DEG decreases when this laser is on.
However, stray light can be minimized by optimal cantilever-fiber
alignment and reducing the gap between fiber and cantilever as
much as possible. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5–3 Graph for the laser current to laser power intensity. The first quadrant
of the photodiode was underneath the tip, and approached to the
sample (black) and the values on a nearby quadrant were also
recorded (green) to give a feeling for the spatial variation of the
laser intensity. Then, the photodiode was retracted approximately
1 mm away from the tip and the values were recorded for quadrant
1 (red) to show a distance dependence of the light intensity. . . . . 93

5–4 AFM Topography images taken at VB = 2 V and −31.66 Hz at 4.5 K
with laser off (a) and on (b). Noise from laser irradiation is observed
in the topography image as streaks in the fast scan direction. PSD
spectra taken over the wetting layer (c) and a quantum dot (d) at
the circled locations in (a). The PSD spectra were created from
10 sec. time scans of the frequency shift while the distance feedback
was off, each contains 10,000 points. Although the presence of the
laser clearly affects the noise over the wetting layer, the noise over
the quantum dot is unaffected by the laser irradiation. . . . . . . . 95

5–5 PSD of the frequency shift over the wetting layer for increasing laser
currents. The frequency shift data consisted of 600,000 pts. and
was collected for 600 s with VB = 2 V at 77 K. The frequency shift
data is treated with a Hamming window and the resulting PSD is
subjected to a 15pt moving average. . . . . . . . . . . . . . . . . . 96

5–6 PSD of the frequency shift over the wetting layer for two sets of
data. The frequency shift data consisted of 600,000 pts. and was
collected for 600 s, at 77 K with VB = 2 V. The corner frequency is
estimated from where the slope of -2 intersects the flat region. The
corner frequency is approximately 0.3 Hz. The frequency shift data
is treated with a Hamming window before preforming the PSD and
the resulting PSD is subjected to a 15pt moving average. . . . . . 97

xx



5–7 PSDs taken over wetting layer for multiple temperatures. All data
taken with VB = 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5–8 The frequency shift parabola resulting from sweeping VB undergoes
two changes with laser irradiation (a). First, the location in VB
where the apex occurs shifts to a more negative value, and secondly
the parabola curvature increases. (b) Time traces (200 sec., 200,000
points) over the same location as (a) are shown for the laser on
and off for VB = 2 V and VB = -3.5 V. It is evident from both
(a) and (b) that the measured noise is larger for VB > VCPD. The
corresponding PSD of the full 600 sec. which is partially shown in
(b) is graphed in (c). Data taken at 77 K. . . . . . . . . . . . . . . 99

5–9 Topography image of a quantum dot where PSD spectra were taken
at each spot labeled on the topography. The PSD spectra were
made from 10,000pts frequency shift data collected over 10s at 77 K
and 2 V. A clear increase in the noise is discernible between 20 nm
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5–10 Time spectra for VB = 1.0 V. The laser is initially off, but is turned
on briefly and off again. The increase in low frequency noise is
clearly visible while the laser is on. The frequency shift takes a
relatively long time to return to its initial value, here we fit it to an
exponential decay. For this spectra, we obtain a better fit to a sum
of exponential functions with time constants of ∼ 14 s. and ∼ 2 s. 101

5–11 Logarithmic dependence of surface photovoltage on laser power. . . . 103

6–1 (a) The Fock-Darwin and Zeeman energy level splittings up to 4 T
are plotted for an InAs dot with ∆E=11 meV. In (b) the charging
energy is added to each curve. The first two energy levels of each
shell are coloured blue, the next two green, and the next two red.
The energy levels of the second shell are plotted with dashed lines
to make it easier to tell the levels apart. . . . . . . . . . . . . . . . 106

xxi



6–2 (a) A bump on the Coulomb blockade peak is an indication that
the cantilever oscillation amplitude is large enough to permit the
electron to enter an excited state of the dot. (b) Theoretically,
taking several curves at increasing oscillation amplitudes and
plotting the derivative of the peak, the onset of this bump is
obvious (dashed line) and the splitting of the shells (∆sp since this
is the first peak) can be determined from the spacing between the
dashed line and the line marking the onset of the peak. An example
of one slice of the peak derivative at a larger amplitude is given in
the inset. Image is courtesy of Steven Bennett. . . . . . . . . . . . 108

6–3 (a) Dissipation-voltage spectra showing an anomalous peak around
1 V, taken over the wetting layer. (b) Dissipation channel recorded
with VB = 1.2 V and ∆ω/2π = −15.8 Hz, during the scan the
dissipation image abruptly changed in contrast (slow scan direction
is downwards). (c) Dissipation channel taken with VB = 1.2 V, and
∆ω/2π = −15.84 Hz and the simultaneously acquired electrostatic
topography image in (d). Images taken at 4.5 K with 8 nm
oscillation amplitude. All images are 500 by 500 nm. . . . . . . . . 110

6–4 (a) Dissipation-voltage spectra, showing a peak in dissipation around
−4 V. (b) Constant height dissipation image taken over the wetting
layer (area of a quantum dot sample where there are no quantum
dots) with VB = −4.3 V. Image is 700 nm by 700 nm. Data taken
4.5 K with 4 nm oscillation amplitude. . . . . . . . . . . . . . . . 111

6–5 (a) Electrostatic topography of quantum dot sample, taken over the
same area as Fig. 6–4(a), with ∆ω/2π = −27.8 Hz. and VB = 2.5 V
as marked on the image. An InP step-edge is in the bottom left
corner. All images are over the same area and are 700 nm by
700 nm. (b) - (e) are constant height dissipation images showing
the spreading of a single ring at the center of the images. In (e) a
white arrow points to another single ring that is showing up. These
are different from the rings associated with the InAs islands, which
show up in the vicinity of the islands at negative voltages. Images
taken at 4.5 K with 4 nm oscillation amplitude. . . . . . . . . . . 112

xxii



6–6 (a) Frequency shift image of an InAs island. Sharp increases in the
frequency shift are visible. (b) Same image as (a) but with the
background subtracted. (c) Peak-like increases are marked with
circles and line-shaped increases marked with arrows. The inset
in (c) is showing the topography of the quantum dot. (d) The
simultaneously acquired dissipation image, with the same overlayed
circles, showing that the peaks in frequency shift are occurring at
the triple points and the lines occur along larger intersections of
the rings. Both images acquired at 4.5 K, with 0.4 nm oscillation
amplitude. Scalebar is 20 nm. . . . . . . . . . . . . . . . . . . . . 113

6–7 (a) Topography image of capped quantum dot sample. Image is
1 µm2, ∆ω/2π = −0.4 Hz, using Kelvin Force Probe Microscopy
(Vac = 0.6 Vrms with 1 kHz frequency and 10 ms time constant for
the lock-in. (b) Constant height dissipation image taken over the
same area as (a) with VB = −7 V. (c) Series of constant height
dissipation images for increasing temperature (all images are 400 nm
× 400 nm taken with VB = −7 V). Dissipation has the same colour
scheme as previous figures, but a colourbar is omitted since it was
difficult to subtract the background. Dissipation in these images is
approximately 1.5 Hz. All images took 18 min to complete. . . . . 115

xxiii



CHAPTER 1

Introduction

O
nce we begin entertaining the notion of building devices out of nanoscale

objects an appreciation of quantum phenomena is crucial since we now find

ourselves on the same length scale as the wavelengths of the electrons themselves.

For conductive materials, to get down to this length scale, we already have made

a number of transitions between the appropriate models that describe our system.

Although we start off with a bulk material which is three dimensional, we begin to

confine electrons within the material, one dimension at a time, so that we first ob-

tain two-dimensional films, then one-dimensional wires, and finally zero-dimensional

quantum dots. Of course, none of these are mathematically three, two, one, or

zero-dimensional, but the systems can be described that way since the de Broglie

wavelength of the electron in that system is on the same order as the confining phys-

ical dimension [1]. Using quantum mechanics, we can capture some of the basic

principles of these quasi-zero dimensional structures by using the familiar electron-

in-a-box calculations. These calculations readily show that electrons in a potential

well can occupy only discrete energy states, where the spacing of these states depends

on the shape, and depth, of the confining potential.

1
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Quantum dots come in many different shapes and sizes. Typically, they are

between a few and tens of nanometers. The material, size, and shape affects the

shape of the confinement potential. Symmetric confinement potentials (which are

smooth on the order of the de Broglie wavelength) lead to an energy level spacing,

∆E, between shells of degenerate energy levels (called shell structure). For example,

spherical colloidal nanoparticles have shell structures similar to atoms because of

their spherical symmetry, while disk-shaped quantum dots have a slightly different

shell structure. Examples of disk-shaped quantum dots are those lithographically

etched out of a two-dimensional electron gas (e.g. a thin layer in a pillar [2]), and

self-assembled quantum dots sometimes fall into this category.

Unlike atoms, quantum dots are not restricted to a spherical shape and so dif-

ferent shell structures are possible. In addition, whereas the spacing of the atomic

energy levels is on the order of 1 eV, the spacing in semiconductor quantum dots is

on the order of 0.01 - 10 meV. The other relevant energy scale is the energy required

to add/remove an electron to the dot, similar to the process of ionization for an

atom [3]. There is an energy cost for adding an additional electron to the dot due to

the Coulomb repulsion from the electrons already residing there. Called the charging

energy, EC , this energy cost can be large enough to suppress electron tunneling into

the dot at low temperature. Quantum dots typically have charging energies in the

range of 10 meV, while the ionization energy of atoms is on the order of 10 eV. The

large difference between these energy scales makes it possible to investigate phenom-

ena that is experimentally challenging or potentially even unattainable in atoms. For

example it is easier to study the effect of magnetic fields, since magnetic fields on

the order of 1 T can lead to considerable change in the shape of the wavefunctions of

electrons in a quantum dot, but for atoms the same modification to the wavefunction
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would require magnetic fields on the order of 106 T [4]. The size difference also has a

practical advantage as the larger quantum dots are easier to incorporate into devices

because of the current limitations of micro and nano fabrication techniques. Since

the properties of quantum dots depend heavily on their size, composition and shape,

there are more available types of energy level structures in quantum dots than in

atoms and thus there is potential for engineering these levels through quantum dot

growth for specific applications or for study.

When the charging energy is large enough to suppress tunneling, energy must

be given to the electrons in a nearby reservoir to overcome this energy cost before

an electron can be added to the dot. This is done by applying a voltage across

the dot and electron reservoir. As the voltage is increased, this energy cost will be

sequentially overcome, each time with a single electron tunneling from the reservoir

into the dot. If this is done by attaching two electrodes to the dot, and then using a

gate electrode to shift an electrochemical potential level of the dot into the electro-

chemical potential window of the two electrodes (i.e. µsource ≥ µdot ≥ µdrain for the

electrochemical potentials of the source, drain and dot) then a single electron current

will flow between the electrodes through the dot. In such an experiment peaks are

measured in the current, as the gate voltage is swept, whenever the electron addition

energy is overcome. If the discrete energy level spacings of the dot are on the order

of the charging energy, then these are also resolved in the peak spacing. Historically,

single electron transport/charging phenomena was first investigated when peaks were

observed in the current through a granular metal film (See [3] for a review). The

first transport measurement through a single metal particle was in 1995 by Ralph et

al. [5]. In this report Ralph et al. observed both single electron charging effects and

the energy level spacing of the dot.
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There are a few different approaches for electrically performing energy level

spectroscopy of single quantum dots. The majority of methods require attaching

electrodes nearby the dot. In addition to the electrodes (source, drain and sometimes

gate) surrounding a quantum dot as discussed above where a single electron current

must pass through the dot, other methods include: lithographically defined lateral

dots and electrodes, vertical dots such as etched pillar designs and nanowires, and

scanning tunneling microscopy. Methods not requiring a current to flow through

the dot are lateral dots using a quantum point contact (QPC) or single electron

transistor, capacitance spectroscopy and atomic force microscopy. Charge sensing

techniques (those not requiring a current to be passed through the dot) are preferred

because in order to have a current through the dot, the tunneling barriers must be

relatively small which makes higher order tunneling processes more likely, and this

makes it more difficult to control the coherence of the quantum state [6]. Sometimes

two of these methods are combined so that one has electrodes and a scanning elec-

trode (i.e. a cantilever from an atomic force microscopy experiment), this technique

is referred to as scanning gate microscopy and it offers spatial control of the movable

gate and the ability to image the surface topography in situ. In order to understand

how our measurements fit into this scheme, each of these methods is described briefly.

In lateral quantum dots, electrons are often confined electrostatically in semi-

conductor heterostructures by applying negative voltages to lithographically defined

electrodes which lie in a plane parallel to, but separated from, a two-dimensional

electron gas. Negative voltages deplete the region of the two-dimensional electron

gas directly below the electrodes, and electrons pool into other regions. Cleverly

designed electrodes create a well formed quantum dot out of this pool. At low tem-

peratures where the charging energy is important, a transport measurement between
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the source and drain electrodes reveals single electron charging effects. The first

intentional quantum dot created in this way was done by Meirav et al. in 1990 and

single electron charging of this dot was demonstrated [7]. The first example of a lat-

eral dot confined electrostatically that reached the few electron regime was in 2000

by researchers at the National Research Council of Canada [8].

As with all electrical conductance measurements, real-time detection is restricted

by the minimal detectable current. For example, presently the smallest resolvable

currents are roughly 10 fA, which corresponds to a tunneling rate of 10 fA/e ∼

100 kHz [9]. Smaller tunneling rates will simply not lead to a large enough current

to be measured via a transport measurement. In order to measure single electron

loading into dots with small tunneling rates, charge sensing techniques must be used.

The first QPC for measuring the charging energy of an electrostatically confined

semiconductor lateral dot was in 1993 by Field et al [10]. The current running

through the QPC is gated by the number of electrons in the dot, making real-time

read-out of the charge state of the quantum dot possible since the bandwidth on the

current measurement is decoupled from the number of electrons tunneling into the

dot. Real-time detection of the electron occupation of a dot was achieved with a

QPC in 2004 [6, 11], and slightly earlier with a single electron transistor nearby the

dot [12,13].

Whereas the orientation of the lateral dots has source and drain electrodes at

the sides and in plane with the dot, a vertical dot (e.g. in an etched pillar or

nanowire) has the source and drain electrodes above and below the dot. Although

for spherical dots this would not make a difference, for non-spherical dots the extent

of the electron wavefunction would lead to a different coupling to the electrodes.

Often for vertical dots, several layers of semiconductors are grown by molecular beam
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epitaxy or chemical beam epitaxy techniques, and then the whole sample is etched

away so that only a pillar remains. The relevant layers of the pillar are the top

electrode, tunnel barrier, quantum well, tunneling barrier, and bottom electrode.

The layered cylindrically symmetric pillars give rise to disk-shaped quantum dots

with parabolic confinement potentials. Transport measurements are then used to

measure the energy levels of the dot. The first demonstration of a pillar dot was

by Reed et al. in 1988 [14], where they measured the energy level spacings of the

dot. In 1996, Tarucha et al. measured the charging energy and discrete energy level

separation of a InGaAs quantum dot and showed that it had the shell structure

expected of a disk-shaped, few electron quantum dot [2].

Another type of dot formed within pillars are those grown in semiconductor

nanowires. The nanowires grow out of a bulk substrate with a width that is on

the order of the diameter of the gold nanoparticle that seeded the growth (typically

a wire may have a 50 nm diameter and the dot a 10 nm thickness). Transport

measurements done on an InAs wire with two, thin InP tunnel barriers with a small

segment of InAs between them, resulted in a few electron quantum dot with shell

structure [15].

Single-electron capacitance spectroscopy [16] measures small changes in charge

collected on a parallel plate capacitor which straddles a quantum dot in order to

detect single electron charging of a dot. In these experiments, the dot is separated

from a bottom electrode by a tunnel barrier and a top electrode by a layer which

does not allow tunneling in a layered semi-conductor structure built by molecular

beam epitaxy. When the voltage of the bottom electrode is resonant with a dot level,

an electron can tunnel on and off the dot and this fluctuating charge is sensed on

the upper plate which is connected to a sensitive electrometer. In 1992, Ashoori et
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al. introduced single-electron capacitance spectroscopy and single electron charging

of several electron puddles were reported. Although the goal was to have a single

quantum dot, from the data the authors deduced that potential fluctuations in the

confinement potential broke the dot into several localized electron pools [16]. In 1993,

the same group published results where they had obtained a single dot, which they

analyzed in the few electron regime under magnetic fields between zero and seven

Tesla [17]. In 1994, Drexler et al., instead of having a relatively large quantum dot

defined within a two-dimensional electron gas, studied an ensemble of InGaAs self-

assembled quantum dots of diameter 20 nm. Using capacitance spectroscopy, and

by comparing their results to a model, the authors convincingly deduced that they

observed the expected shell structure of quantum dots with a parabolic confinement

potential. Furthermore, their quantum dots showed the first example of the energy

level spacing being larger than the charging energy [18]. Relevant to the work in this

thesis, in 1997 Miller et al. performed a similar experiment as in Ref. [18] but with

InAs self-assembled dots and were able to confirm that, on average, these dots also

had the shell structure expected of dots with a parabolic confinement potential [19].

Single-electron capacitance spectroscopy is a powerful method for investigating the

properties of quantum dots, however it is restricted to studying the quantum dots

that are between the capacitor plates which has so far led to only large dots or dot

ensembles being measured.

The scanning probe microscopes, such as the scanning tunneling microscope

(STM) and the atomic force microscope (AFM), can routinely access sub-30nm

length scales. Typically, they are used to first map out the surface topography and

then probe some other local property of the sample. A small probe, often a cone-like

structure with the smallest tip apex possible (on the order of 10 nm in diameter) is
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brought into close proximity to the sample and the interaction that the probe has

with the sample is not only measurable but is often used as part of a feedback-loop to

control the distance between the sample and probe. The benefits of scanning probe

techniques over the ones aforementioned is the lack of a need for electrodes to be

built around the dot and, consequently, that several individual dots can be measured

in one experiment. Lithography techniques are not yet to the point where they can

reproducibly place electrodes around a single dot and many devices are fabricated

with low yield. This is particularly true with dots that are randomly distributed on

the sample surface, such as self-assembled quantum dots, however some groups have

been successful in doing so, yielding interesting results but only on one device (for

self-assembled InAs quantum dots see [20–25]). The scalability of the method is not

only important for dot characterization but also for potential applications. There

are two other scanning probes, the scanning capacitance microscope and scanning

single-electron transistor, which can routinely access sub-100 nm length scales and

are very sensitive to charge but are not as powerful for mapping out the surface

because the probes are much larger than those typically used in STM and AFM.

The scanning capacitance microscope [26] (also called subsurface charge accumu-

lation microscopy) and scanning single-electron transistor [27] were developed around

the same time. The scanning capacitance microscope works on the same principles

as capacitance spectroscopy, but now the upper plate of the capacitor is a scanning

probe which can be moved over the sample surface to locally probe the sample ca-

pacitance. It was first demonstrated in 1998 where the charge in a two dimensional

electron gas was imaged [26], and in 2008 single electron charging was achieved for

semiconductor donor molecules [28]. The scanning single-electron transistor, capable

of detecting a fraction of an electron charge, fabricates a single electron transistor
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onto the end of a glass probe which is scanned over the sample surface to identify

local changes in electric field. It was first demonstrated in 1997 by Yoo et al., when

they identified (amoung other things) several individual photo-ionized charge sites

in a semiconductor heterostructure [27]. In 2000, the same group observed ring-like

shapes in a two-dimensional electron gas which they argued were caused by single

electron charging events [29].

The precursor to the AFM, the STM [30] uses the tunneling current between a

sharp conductive probe and sample for distance regulation, and to measure sample

properties. As the STM requires a current to flow between probe and sample, the

samples must be conductive. The first example of an STM measurement showing

single electron charging effects in the tunnel current taken over a single particle

(in this case an aluminum grain) was accomplished by van Bentum et al. in 1988.

In these types of experiments, the STM probe forms a nanoscale tunnel junction

with an electrode-tunnel barrier- quantum dot - tunnel barrier (small vacuum gap)

- probe configuration. In this way the dot is separated from the electrodes by two

tunnel junctions, and so the measurements are fundamentally the same as those using

two lithographically defined electrodes. In 1999, STM measurements over single

InAs nanocrystals were preformed in this manner. Single electron charging effects

were observed, from which the authors could deduce that some of the nanocrystals

appeared to have the shell structure of a spherical particle which was expected [31].

The AFM [32] uses a sharp tip attached to a cantilever to measure the changes

in the cantilever properties (i.e. change in cantilever deflection, resonance frequency,

or oscillation amplitude) caused by tip-sample force interactions, in order to locally

characterize the sample. Unlike the STM, the AFM does not require a current to flow

between sample and probe and thus does not require conductive samples, making
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the AFM a more suitable choice for most samples. Specifically, with reference to

measuring the energy levels of single particles, the AFM can analyze buried, or

capped, structures, can measure with the cantilever further away from the dot to

minimize deformation of the confinement potential, and can measure the tunneling

rate of the electrons into the dot for certain conditions. All of these additional

abilities are crucial for many practical applications, making the AFM, in most cases,

a more suitable tool for measuring the energy levels of quantum dots.

The first demonstration where an AFM was used to detect the single electron

charging of a quantum dot was in 2002 by Woodside and McEuen [33]. In this

experiment, changes to the cantilever resonance frequency and Q-factor were ob-

served in response to voltage-induced charging of segments of a carbon nanotube

(quantum dots) of approximately 1 µm in length. 1 The same research group con-

tinued measurements on the carbon nanotube segments and were able to measure

the same effects in carbon nanotubes which were not attached to source and drain

electrodes [34]. In this work, they also were able to reduce the number of holes con-

fined in the segment so that only a few remained. Later, in 2008, the group attached

gold nanoparticles to the nanotubes and measured single electron charging of these

nanoparticles. As the nanoparticles had an average diameter of only 12 nm, they

were able to observe the charging at 77 K. In this work, they also provided a formula

for calculating the tunneling rate of the electrons from the carbon nanotube into

the gold nanoparticle. The systems and temperature regime studied by this group

1 In this article, Woodside and McEuen also were the first to demonstrate scanning
gate microscopy where the AFM probe is used as a movable gate over a quantum
dot and the current through the dot as a function of the gate voltage revealed single
electron charging.
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- the micron sized carbon nanotube segments and the 12 nm gold nanoparticles -

led to equally spaced charging events which does not reveal the discrete nature of

the energy levels of the particle, but merely reflects its overall capacitance. Thus,

in the experiments done by this group, shell structure of the quantum dots was not

observed and so their theoretical analysis did not include effects caused by degener-

ate levels [33–37]. It is important to note that in these experiments the charge on

the particle was only measured indirectly, i.e. when an electron tunneled between

backelectrode and dot. Only by counting the number of “tunneling events” could

the number of electrons that had been added/removed from the dot be determined.

A similar study, by Dana and Yamamoto in 2005, measured single electron

charging of localized states on the semiconductor surface [38]. They also claimed to

have studied uncapped self-assembled quantum dots, but although a figure showing

the data is mentioned in the paper, the figure itself is missing. However, they showed

AFM constant height amplitude images of GaAs capped self-assembled quantum dots

that exhibited faint ring structures which is the signature of this one-by-one electron

charging of a dot.

There are two remaining published works in the field which show similar results

to each other. Unlike the results from McEuen and Yamamoto, which showed peaks

in the spectra and rings in the images, neither of these reports showed peaks prob-

ably because the cantilever oscillation amplitude was too large. Although the data

presented in both works are convincing, unfortunately they lack the corresponding

AFM images which localize the observed charging onto the uncapped InAs quantum

dots [39] or the gold nanoparticles [40], which is where they claim the results are

originating. Moreover, neither group published control data taken off the dot in

order to attribute the observed effect as originating from the dot.
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For completeness, there are a few other AFM studies which can measure the

electrostatic force arising from a single electron. These reports are impressive, be-

cause they have achieved the ultimate in electrical sensitivity. These studies differ

from the previous ones in that they are focusing on placing a single charge on the

particle and measuring the change in force resulting from that charge, and not on

using single electron charging to measure the physical properties of the particle. Ob-

viously, these works are closely related to the aforementioned studies and also to

studies of the electrostatic force in general and so it is important to cover them here.

The first report of single electron sensitivity was in 1990 by Schönonberger and

Alvarado who reported discrete steps in the electrostatic force which they attributed

to the recombination of charges in a region where the surface had been intentionally

charged by applying a large bias [41]. Then, in 2001, Klein and Williams showed

the detection of single electrons moving from a small metal particle (attached to the

tip) into the conductive tip of an oscillating AFM cantilever upon close approach

to a sample since this increased the electrostatic field between particle and tip [42].

Distinct oscillations occurred in the cantilever amplitude as each electron left the

metal particle, with increasing fluctuation size for each subsequent electron. In this

experiment the electrons left the particle based on the proximity of the metal particle

to the surface (and the strength of the electric field) and not because of any funda-

mental property of the particle itself [42]. The same group later identified localized

states in thick films of hafnium silicate and silicon dioxide by tunneling single elec-

trons between a conductive AFM tip and a localized state [43]. Although similar to

operation as an STM, here only a single electron is transferred between tip and sur-

face every second or so, resulting in currents which are much too low to be measured

by STM. The change in the electrostatic force caused by this charge displacement
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is detected via AFM techniques [43–45]. Recently, Gross et al. demonstrated the

ability of an AFM to not only charge gold or silver adatoms on an NaCl substrate

by a single charge, but also the ability to distinguish the charge state of the adatom

with single electron resolution [46].

The work by Williams not only demonstrates the sensitivity of AFM, but is

also of practical importance as the revealed localized states trap charge, and charge

traps degrade electrical device performance. As electronic devices continually shrink

in size, it becomes more and more likely that even one of these traps will have a

significant influence on its operation. Characterizing these traps is the first step in

being able to control them. The ability to characterize electrostatic noise originating

from the sample with high spatial resolution is important, yet few studies have been

done with AFM. In the later chapters of the thesis, this topic is discussed in more

detail.

From these studies, AFM has proven itself as a contender in the field of quantum

dot characterization. The combined high spatial resolution and single electron charge

sensitivity makes it aptly suited for this field. It is flexible in that it can be used to

measure the properties of several types of quantum dots, in particular self-assembled

quantum dots, which are being investigated for use as single photo-sources [47], and

also for quantum computing for housing spin qubits [48, 49]. In this thesis, we use

an AFM for performing energy level spectroscopy on self-assembled InAs quantum

dots. Since we are using AFM, we do not need to pattern electrodes onto the sample

which simplifies the analysis and ensures that the electrical properties of the dot

are not altered by the residue of the patterning process. In addition, we can study

several dots in one experiment and image the dot topography in situ for comparison

with the dot’s electrical properties. We use the same measurement techniques as
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the McEuen group, which is a measurement technique unique to resonating charge

detectors.

Chapter 2 provides the necessary theoretical background required for under-

standing the energy level spectrum of a quantum dot, and under what conditions

we may be able to measure these levels. Chapter 3 explains the basic principles of

the AFM modes of operation that were used in this thesis. Chapter 4 contains some

data and analysis pertinent to the study of quantum dot energy levels. Chapter

4 also contains examples of how the electrostatic background affects the quantum

dots. In Chapter 5, one method that we have used to characterize the electrostatic

background is presented. In particular, we induced charge noise on the sample via

super bandgap laser irradiation and measured the generation-recombination noise of

the charge pairs. Chapter 6 starts with a plan for the next set of experiments and

summarizes the basic conclusions of the thesis.



CHAPTER 2

Theoretical Background

2.1 Quantum Dot Physics

S
emiconductor quantum dots confine electrons into volumes with di-

mensions on the order of a few to tens of nanometers. The confinement of the

electron wavefunction is on the order of the size of the dot which leads to a discrete

spectrum of energy levels within the dot (shell structure). The shape of the confine-

ment potential can lead to degeneracies amongst these discrete energy levels. Since

this is also the case for atoms, quantum dots are sometimes referred to as “artificial

atoms” [50].

The Coulomb repulsion from the electrons confined within the quantum dot

results in an energy barrier that must be exceeded in order to add an additional

electron to the dot, called the charging energy, EC :

EC =
e2

2CΣ

(2.1)

Where e is the electron charge, and CΣ is the total capacitance of the dot which is

equal to the sum of the capacitances between the dot and all other conductors. In

our setup these are the tip-dot and dot-2DEG capacitances [i.e. CΣ = Ctip + Csub

15
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in Fig. 2–1)(b)]. The charging energy gives us an estimate of the size of the dot

by assuming some shape of the dot and calculating the capacitance for such a dot

knowing CΣ. For example, the capacitance of a flat disk with radius R is a decent

approximation of the shape of our quantum dots which are wide but short. This

capacitance is proportional to dot radius, i.e. Cdisk = 8ε0εrR for εr the dielectric

constant of the surrounding material [3]. It is clear then, from Eq. 2.1, that smaller

dots have larger EC and vice versa. Under certain conditions, the value of EC can

be large enough to suppress tunneling of electrons onto the dot, keeping the number

of electrons on the dot constant, this is called Coulomb blockade.

2.1.1 Coulomb Blockade

The two required conditions for Coulomb blockade are very intuitive: the elec-

trons must not have enough thermal energy to overcome the charging energy (i.e.

EC � kBT ), and the electron wavefunctions must be well localized on the dot,

making the number of electrons on the dot well defined (i.e. the tunnel junction

resistance, RT , must be large: RT � h
e2
' 25.8kΩ 1 ) [3,52]. If the quantum dot is in

a Coulomb blockade state, tunneling into the dot is suppressed and no charge can be

added or removed from the dot. The term originated from transport measurements

through a dot between two conductive leads, when oscillations in the conductance

occured as a nearby gate voltage was varied. When tunneling was suppressed the

conductance was low, and the current between source and drain was “blockaded.” [51]

1 The lower bound of h/e2 comes from the Heisenberg uncertainty principle.
∆EC∆t > h for ∆t = RtC as the time it would take to charge/decharge the dot-
2DEG capacitor [3, 51].
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Experimentally, the two conditions for observing Coulomb blockade are met

by carrying out the experiments at a sufficiently low temperature and by having a

sufficiently opaque tunneling barrier between the dot and electron reservoir. Fig. 2–1

(a) and (b) shows a schematic of our experimental setup and an equivalent circuit

diagram. It so happens that our experimental configuration forms the simplest type

of circuit that can be used to measure Coulomb blockade in a quantum dot as the

dot is coupled to only one tunnel junction. This type of configuration is given the

name single electron box. In Fig. 2–1(a) the cantilever is positioned above a single

quantum dot. The vacuum gap between tip and dot forms a capacitor, and the dot

and 2DEG are separated by an InP tunnel barrier. As the energy barrier formed by

the vacuum gap is much larger than that formed at the semiconductor interfaces,

tunneling occurs through the InP and not the vacuum gap and so a tunnel barrier

is indicated in this region of the equivalent circuit [Fig. 2–1(b)].

Fig. 2–1(c) shows the band diagram of our sample at negative VB. The quantum

dot depicted in the band diagram has well spaced energy levels to represent both the

charging energy and the possibility of observing the shell separation, ∆E. An electron

will only tunnel into the dot when the electrochemical potential of the electrons in

the 2DEG overlaps a dot level. We assume a constant and continuous density of

states for the 2DEG so that the electrons populate these states according to the

Fermi-Dirac distribution:

f(E) =
1

1 + e
E

kBT

(2.2)

where T is the temperature, kB is the Boltzmann constant, E = µdot − µ2DEG, and

µdot and µ2DEG are the chemical potentials of the quantum dot and the 2DEG. If we

consider a single, non-degenerate dot level, tunneling into and out of the dot (with
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Figure 2–1: (a) A schematic of the sample setup showing the oscillating
cantilever (with pyramidal tip) above a quantum dot. Arrows indicate the
path taken by tunneling electrons. (b) Equivalent circuit diagram of setup.
(c) Band diagram of sample with a negative VB applied. [53]
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tunneling rate Γ) will be maximal when E = 0, called a charge degeneracy point

since both n and n+1 electrons on the dot are energetically equal. This occurs when

µdot = µ2DEG. An electron tunnels from the 2DEG into the dot with the rate Γ+

and out with Γ−.

Γ+ = Γf(E) (2.3)

Γ− = Γ[1− f(E)] (2.4)

There are two regimes of Coulomb blockade, classical and quantum, based on

whether or not the ∆E spacing is resolvable. In the classical regime, several discrete

energy levels of the quantum dot overlap the Fermi-Dirac distribution of reservoir

electrons, such that EC � kBT � ∆E. In this regime, tunneling events occur with

periodicity EC . In contrast, in the quantum regime only one discrete energy level

overlaps with the Fermi-Dirac distribution of the reservoir since the separation of

the next higher level is larger than the thermal broadening of the reservoir states,

i.e. EC ≥ ∆E � kBT .

2.2 Cantilever Dynamics

In atomic force microscopy the detected forces interact with a micro-fabricated

cantilever and, since the pyramidal tip mounted on the free end is more than 10 µm

long, more substantially with the end of the tip [54]. There are a wide variety of

cantilevers commercially available which are tailored to either the mode of operation

or the type of sample to be studied. AFM relies on the change in the mechanical

state of the cantilever (deflection, resonance frequency, dissipation/damping, or oscil-

lation amplitude) resulting from the tip-sample interaction as a feedback mechanism
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to regulate tip-sample distance, and so the cantilever plays an integral role in the

experiment.

As the typical oscillation amplitude is on the order of tens of nanometers, there

are billions of quanta stored in the cantilever and so it is treated it as a classical

oscillator.2 The equation of motion of the driven and damped cantilever with a

single degree of freedom is:

mz̈(t) +mγ0ż(t) +mω2
0z(t) = Fdrive(t) + Fts[z(t), ż(t)] (2.5)

Where the intrinsic cantilever properties m, ω0, and γ0 = ω0/Q0 are the effective

mass, resonance frequency, and damping coefficient (due to phonons, thermoelastic-

ity, surface coatings, etc.). The intrinsic properties of the cantilever can be deter-

mined for a specified temperature and pressure far away from the sample surface

(where sample interaction forces, Fts, are negligible). Q0 is the quality factor of

the cantilever, also measured far from the sample. The free end of the cantilever

oscillates with position z(t) in time t. Although the AFM can be operated in the

static deflection mode [32] (where the cantilever is not driven into oscillation, i.e.

Fdrive = 0, and the ∆z = −Fts/k for spring constant k and cantilever deflection ∆z),

only dynamic mode AFM [56] was used in this thesis and in this mode the cantilever

is oscillated with nearly sinusoidal oscillations of amplitude a and frequency ωd so

2 Since ~ω0 � kBT the cantilever is not a quantum oscillator. For the type
of AFM cantilevers that we use, the cantilever would need to be oscillating with
amplitudes of approximately 10−20 m in order for quantum mechanical effects to
come into play. This value is calculated from the standard quantum limit for an

oscillator, ∆x =
√

~
2mω0

, where the definitions for the variables can be found following

Eq. 2.5 [55].
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that z(t � 0) ' a cos(ωdt).
3 Although Fts(z) is non-linear, causing deviations

to the harmonic motion of the cantilever, under normal operation small oscillation

amplitudes relative to the change in force-gradient ensure this assumption is justi-

fied [57]. The cantilever is driven into oscillation by Fdrive, which is applied to the

cantilever via a piezoelectric actuator underneath the cantilever chip. The form of

Fdrive depends on the type of AFM mode used.

2.2.1 Frequency Modulation Mode AFM

Although a more general overview of the types of AFM operation modes is given

in Chapter 3, here we discuss the two relevant modes of operation used herein to

provide the form of Fdrive. We typically use only two types of dynamic mode AFM:

constant excitation [56], and frequency modulation [58] or self-oscillation mode. Con-

stant excitation mode uses Fdrive = Fd cos(ωdt) so that the solution to Eq. 2.5 is

z(t� 0) ' a(ωd, Fd) cos[ωdt+θ0(ωd, Fd)] for drive oscillation frequency, ωd and drive

amplitude Fd. Since the oscillation amplitude, a, is a function of Fts it can be used

in a feedback loop for distance control. The phase shift between cantilever deflection

and drive signals, θ, although also a function of Fts, is not generally used for distance

regulation as that signal saturates more quickly than a.

We use the constant excitation mode to determine theQ0 and ω0 of the cantilever

when the tip-sample gap is very large so that tip-sample interactions are negligible. A

resonance curve of the cantilever is obtained by measuring the oscillation amplitude

while sweeping the driving frequency. The maximum amplitude of this curve occurs

at ω0 and the full width at 1/
√

2 of the maximum amplitude, ∆ωFWRHM
d (with

3 Whether ωd = ω or ωd = ω0 depends on the type of dynamic mode. Where
ω = ω0 + ∆ω and ∆ω is a change in the resonance frequency from ω0.
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FWRHM standing for full width at root half max), describes the quality factor:

Q0 = ω0/∆ω
FWRHM
d . The oscillation amplitude resonance curve and phase response

of the oscillator are given by:

a =
Fd
k

ω2
0√

(ω2
0 − ω2

d)
2 + (ωdω0/Q0)2

(2.6)

tan(θ0) =
1

Q0

ωdω0

ω2
0 − ω2

d

(2.7)

From Eq. 2.6 it is clear that the maximal amplitude occurs at ωd = ω0, and in this

condition Eq. 2.7 shows that the phase difference between the drive and cantilever

deflection is 90o. This is a phase lag so that the cantilever velocity is in phase with

the driving frequency.

In self-oscillation mode, Fdrive = Gdz(t−t0) where Gd is the driving gain applied

to the position detection signal at retarded time t − t0. The time t0 is manually

adjusted by a phase shifter at the beginning of the experiment in order to minimize

Gd for a set oscillation amplitude. Ideally, this corresponds to a phase lag of 90o

between the cantilever deflection and drive signals and so we use this value to simplify

the analysis.4 More details on how to operate the AFM in self-oscillation mode are

given in Section 3.3, which includes a block-diagram of the self-oscillation mode

feedback loop (Fig. 3–4).

4 Ref. [59] found that a large detuning of approximately 20% in the phase lag
resulted in only a 0.002% error in the frequency shift and 6% in the dissipation.
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2.2.2 The Tip-Sample Interaction Force

Tip-sample interactions arising from attractive forces cause the cantilever beam

to soften, leading to a negative frequency shift of the cantilever. For example, if

the force gradient is constant over the oscillation cycle then the change in resonance

frequency is [60]:

∆ω =
ω0

2k
kts = −ω0

2k

∂Fts
∂z

. (2.8)

Although this restraint is generally not strictly met, Eq. 2.8 serves to demonstrate

that an attractive Fts leads to a negative shift in resonance frequency by ∆ω. The

cantilever resonance frequency can be measured and used for distance regulation by

a feedback loop.

We can obtain Fts as a function of tip-sample separation, z0, for most types

of forces by measuring the ∆ω(z0) using self-oscillation mode. Again assuming

sinusoidal motion of the cantilever, z(t) = a cos(ωt), the driving force becomes

Fdrive = Fd sin(ωt) and we can use Fourier analysis to obtain a solution to Eq. 2.5 [57]:

∆ω

ω0

= − 1

ak

1

T

∫ T

0

Feven(z0 + z(t)) cos(ωt)dt (2.9)

Fd + amγ0ω =
2

T

∫ T

0

Fodd(z0 + z(t)) sin(ωt)dt (2.10)

Where T is the temperature, k is the spring constant5 , ω = ω0 + ∆ω, and Fts =

Feven + Fodd.

5 Here, the spring constant is actually referred to as the dynamic spring constant,
which depends on which type of oscillation mode is used. However, if we are only
oscillating the cantilever at its fundamental mode, it is a good approximation to use
the static spring constant. [57]
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In order to carry this analysis further, we require both Feven and Fodd to be

uniquely defined for all tip-sample gaps, z0 (i.e. the force measured during cantilever

approach and retraction have the same value for the same z0) [57]. Although this

is satisfied for Feven, it is not the case for Fodd. This can be remedied by describing

Fodd = γgen(zc, a, ω, z(t))żc(t). To simplify the notation, we used zc = z0 − a to

describe the distance of closest approach. “The generalized damping coefficient” γgen

is an even function and żc(t) obviously an odd function since we approach and then

retract from the sample. This expression exactly represents Fodd. Provided that both

Feven and ∆γgen (which is the change in γgen resulting from Fts) are unique functions

of tip-sample gap and that Fts → 0 for infinite tip-sample gap then Fts = Feven+Fodd

can be determined [57]:

Feven(zc) = 2k

∫ ∞
zc

[(
1 +

a
1
2

8
√
π(t− zc)

)
Ω(t)− a

3
2√

2(t− zc)
dΩ(t)

dt

]
dt (2.11)

∆γgen(zc) = −mγ0
∂

∂zc

∫ ∞
z

[(
1 +

a
1
2

8
√
π(t− zc)

)
Θ(t)− a

3
2√

2(t− zc)
dΘ(t)

dt

]
dt

(2.12)

where

Ω(zc) =
∆ω(zc)

ω0

(2.13)

Θ(zc) =
∆Fd(zc)

F̄d
− ∆ω(zc)

ω0

(2.14)
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The fractions ∆Fd(zc)

F̄d
and ∆ω(zc)

ω0
are measured experimentally; the former from the

drive signal required to maintain a preset oscillation amplitude recorded by the auto-

matic gain controller (AGC), and the latter is measured by the PLL. Using Eq. 2.11-

Eq. 2.14 we are able to extract the Fts caused by tip-sample interactions [57].

2.2.3 Dissipation Measurements

In order to sustain the cantilever oscillations with constant amplitude (greater

than that achievable by thermal oscillation alone), the cantilever must be continually

driven. The driving signal required to maintain a constant amplitude is what the

AFM community refers to as a dissipation signal. Damping processes increase the

dissipation. The energy loss per oscillation cycle is [61]:

Ets = Eo

[
Aexc
Aexc0

− ω

ωo

]
≈ Eo

[
Aexc − Aexc0

Aexc0

]
. (2.15)

where Aexc is the excitation signal and Aexc0 is the intrinsic or background dissipation.

The fraction ω/ωo is the dynamic resonance frequency compared to the reference

taken at Fts = 0, and is approximately equal to 1 in self-oscillation mode since the

shift in resonance frequency is small compared to ω0. Eo = πka2

Q0
is the intrinsic loss

of energy per oscillation cycle (i.e. for Aexc = 0 in Eq. 2.15).

To get a feel for the origin of the damping, consider the following force Fts =

Fts0(z(t− τ)) which is applied to the cantilever after some lag time τ . In our system,

this lag time is the tunneling rate of the quantum dot. If we assume small z and τ

6 , and Taylor expand Fts, and insert the result into Eq. 2.5, then we obtain:

6 This is not necessarily a valid approximation (i.e. Γ � ω) in systems like ours
where the cantilever resonance frequency is similar to the tunneling rate, however it
is nevertheless instructive in demonstrating the origin of the observed dissipation.
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mz̈ +mγ0ż +mω2
0z ≈ Fdrive + Fts0 +

∂Fts
∂z

(z − τ ż). (2.16)

The force Fts has now been decomposed into 3 parts: a constant term, a term linear

in z, and a term linear in ż. By comparison with the left hand side of Eq. 2.16 we

observe that Fts has led to a change in the damping coefficient and spring constant,

which corresponds to a change in dissipation and resonance frequency shift. Although

a more rigorous derivation to describe the damping is provided later, this example

highlights that in our system the observed dissipation results from a time lag between

cantilever motion and force.

2.3 Conservative Forces

There are several types of tip-sample interaction forces that can be measured

using AFM, for example the van der Waals, magnetic, adhesion, frictional, repulsive

and electrostatic force. Since we work under vacuum at low temperature, on non-

magnetic samples in the non-contact mode, we are interested only in the van der

Waals and electrostatic forces, since both are long-ranged.

2.3.1 Repulsive forces

Only a brief explanation of the short-ranged repulsive forces will be covered

here because in general the cantilever was kept out of the repulsive force regime in

the experiments reported. However, for spectra where the cantilever is approached

towards the sample, the repulsive regime is used to define where the tip-sample gap

is zero. Using self-oscillation mode, we define the zero gap where the oscillation

amplitude is only 95% of its free value, and at this separation the cantilever will be

in the repulsive force regime. Empirical equations are used to model the potential

which quickly rises monotonically at small gaps. For example, the Inverse Power-Law
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Potential is given as U(z0) = (σ/z0)n, nεI, for hard-sphere diameter σ [62]. From the

potential, the force can be calculated via: F = −dU/dz0.

2.3.2 Van Der Waals Force

The long ranged, usually attractive, van der Waals force arises from the dipole-

dipole interactions between the atoms of the sample and cantilever tip, and are

described by FvdW [62]:

FvdW ' −
CHR

6z2
0

(2.17)

for a spherical tip of radius R, and tip-sample gap z0 (z0 � R). In vacuum, the

Hamaker’s constant, H, is approximately 10−19J. 7 CH is not strictly constant

with tip-sample separation as retardation effects arise based on how efficiently the

dipoles are able to couple and this becomes more difficult at larger separations since

the coupling is not instantaneous. At larger tip-sample separation (z0 � R), this

effect can be partly accounted for by a more rapidly decaying force, now by a factor

of 1/z3 [64]. The magnitude of this force at z0 = 10 nm tip-sample separation,

R = 5 nm, and CH = 10−19 J, is approximately 1 pN.

2.3.3 Electrostatic Force

As in a capacitor, the electrostatic force in our system arises from the attraction

between plates separating opposite charges. Here, the plates of the capacitor con-

sist of the conductive cantilever (usually a commercially purchased semi-conducting

7 Depending on the value of the dielectric constants for the tip, sample, and im-
mersion medium, CH can be negative, making the van der Waals force repulsive.
Ref. [63] describes an experiment where this was shown with AFM.
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cantilever is sputter coated with a metallic layer) and the sample. The sample can

be completely conductive, or a backelectrode layer can be topped with insulating or

semi-conducting layers. Due to the long-ranged nature of the electrostatic force, the

voltage applied between tip and backelectrode can be used to probe the electrostatic

properties of these layers. If the tip and sample form a capacitor, C, having a charge

of |q| on each plate, then the energy of the system is U = 1
2
q2/C. The electrostatic

force, which includes the work done by the battery to maintain the charge on the

plates, is then:

Felec(∆V, z0) =
1

2

∂C

∂z0

∆V 2 (2.18)

The voltage, ∆V , dropped between the cantilever and sample is ∆V = VB − VCPD,

where VB is the tip-sample bias voltage and VCPD is the contact potential difference

between them.

To compare the magnitude of the electrostatic force to the van der Waals force,

we use the calculation by Hudlet et al. [65] for the electrostatic force between a

conductive sphere and plane, Felec = πε0( R2

z0(z0+R)
)V 2, for a tip of radius R = 5 nm,

tip-sample separation z0 = 10 nm, and ε0 = 8.85×10−12m−3kg−1s4A2. For V = 1 V,

the Felec ≈ 5 pN.

2.4 Nonconservative And Conservative Forces Of Single-Electron Tun-
neling

In the previous section the forces were distance dependent and so respond in-

phase with the oscillatory motion of the cantilever. Now we consider the force exerted

by the single electron tunneling between dot and 2DEG. Since the electron has a

lifetime on the dot, these forces are not necessarily in phase with the cantilever

motion and then these forces damp the cantilevers’ motion.
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In the Coulomb blockade regime, the charge on the dot is fixed and the tunnel

barrier can be treated as a capacitor so that the equivalent circuit can be analyzed.

Using the notation of Fig. 2–1(b), the sum of the energy stored in the two capacitors

is:

U =
q2
sub

2Csub
+

q2
tip

2Ctip
=

q2

2CΣ

+
1

2

CsubCtip
CΣ

V 2
B (2.19)

Where qsub and qtip are the charges on the capacitors formed by the tunnel barrier and

the tip-dot, respectively, and q = qsub − qtip = −n |e| is the charge on the dot. The

latter form of the energy consists of the charging energy of the dot and the energy

stored in the capacitors which are connected in series [66]. In order to describe the

free energy of the system, the work done by the battery to maintain the voltage on

the capacitors, W , needs to be subtracted from the energy stored in the capacitors.

W =

∫ qtip

0

VBdQ = qtipVB =
CsubCtip
CΣ

V 2
B + q

Ctip
CΣ

VB (2.20)

The free energy of the system describing a dot coupled to a cantilever of small

oscillation amplitude is then H = U −W :

H =
q2

2CΣ

− qCtip
CΣ

VB −
1

2

CsubCtip
CΣ

V 2
B (2.21)

From Eq. 2.21 we can get the electrostatic force from the charge on the dot [39]:

Felec(z0) =
1

2

∂Cseries
∂z0

(
VB +

q

Csub

)2

. (2.22)

Where Cseries =
CtipCsub

CΣ
. Compare Eq. 2.22 to Eq. 2.18 and notice that the charge

on the dot is going to shift the apex of the parabola which describes the force.

In our measurements, we are not able to resolve the change in electrostatic force



2.4 Nonconservative And Conservative Forces Of Single-Electron
Tunneling 30

through the addition of a single electron onto the dot. This measurement is difficult

because of the large electrostatic background between the tip and 2DEG, making

it difficult to isolate a single charge. In 2009, Gross et al. were able to distinguish

a change of a single electron charge on gold adatoms in the frequency shift of the

cantilever, resulting from a change in force of a few piconewtons [46]. Differences

between microscopes aside, it would be more difficult to measure the addition of a

single charge to the quantum dot since it is much larger than a gold atom and so the

electron wavefunction is spread out over a larger area.

To show how the force caused by the electron tunneling is measured in the

cantilever resonance frequency and cantilever dissipation, we first rewrite Eq. 2.21

into a form that includes the charging energy, EC , of the dot [67]:

H = EC [(n−N )2 − (1 +
Csub
Ctip

)N 2] (2.23)

Where N = −CtipVB
e

is the number of electrons that would be on the dot if the

number, n, was not restricted to being an integer. The first term determines the

periodicity of the Coulomb blockade oscillations, but we are only considering one

dot energy level here and so EC is written as a constant. However, to extend this

to a more general notation, each electron can have a different EC and the total

Hamiltonian would be a sum over all of the levels of the dot [67]. The second term

describes the capacitive coupling of the cantilever to the dot.

The magnitude of the cantilever oscillation amplitude provides two regimes for

studying the quantum dot energy levels. In the weak coupling regime cantilever and

dot are considered weakly coupled and the cantilever motion is small enough that

during one oscillation cycle the cantilever does not swing the dot level completely

on/off the charge degeneracy point so that the Coulomb blockade peak linewidth is
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thermally broadened [67]. Conversely, in the strong coupling regime, the motion of

the cantilever during one oscillation cycle affects the dot, namely by modifying the

electron add/remove rate. Since the cantilever motion is now large enough to swing

the dot level on/off the charge degeneracy point during one oscillation cycle, the peaks

are broadened by the oscillation [53]. In order to be in the strong coupling regime,

Aa� kBT where Aa and kBT are approximately the Coulomb blockade peak widths

for the oscillation broadened and thermally broadened peaks, respectively. These

two regimes need to be treated separately theoretically, however experimentally the

transition between these two regimes is gradual. First we will go through the main

steps of the weak coupling theory, and obtain an expression describing the resonance

frequency shift and dissipation of the cantilever. Afterwards we will take a look at

the strong coupling theory.

2.4.1 Weak Coupling For A Non-Degenerate Level

When the coupling between cantilever and dot is weak, linear response theory

can be used to derive an expression for the frequency shift and dissipation experienced

by the cantilever when an electron is tunneling [67,68]. The motion of the cantilever

during an oscillation cycle is considered to be small enough that the system responds

linearly to the change and higher order terms can be neglected. Since Ctip(z) is the

only variable that is a function of cantilever tip position in Eq. 2.23, we Taylor expand

it and replace Ctip everywhere in Eq. 2.23 with the expanded version and focus on

the terms that are both linear in z and depend on the number, n, of electrons on the

level (i.e. n = 0 or n = 1 since we are only considering one level). We find this term

is [67]:

Hint = −Anz. (2.24)
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Where A is:

A = −2EC
VBCsub

e(Ctip + Csub)

∂Ctip
∂z

, (2.25)

and describes the dot-cantilever coupling strength for a given occupation level in the

dot (since EC is different for each peak). The form of Hint describes a force (i.e.

Hint = Fz) exerted on the cantilever which fluctuates with n according to whether

or not the level is occupied. This force can be decomposed into a sum of an in-

phase and out of phase component with respect to the cantilever motion, giving a

conservative and damping force respectively [68].

fdamping(t) = −m
∫ ∞
−∞

dt′∆γ(t− t′)ż(t′), (2.26)

fconservative(t) =
2k0

ω0

∫ ∞
−∞

dt′∆ω(t− t′)z(t′), (2.27)

Using linear response theory, we can obtain expressions for the frequency shift,

∆ω, and dissipation, ∆γ, lineshape measured by the cantilever, by solving for the

linear response coefficient λF since [68]:

k0

ω0

2

∆γ(ω) = −A2

(
−ImλF (ω)

ω

)
(2.28)

2k0

ω0

∆ω = A2[−ReλF (ω)]. (2.29)

To do so, we look at the probability that a level is occupied while this level is

oscillating with respect to the states of the 2DEG as a consequence of the oscillating

cantilever [67]. Let p0 be the probability that the level is empty and p1 be the

probability that the level is occupied. These probabilities satisfy master equations:
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∂p0

∂t
= −Γ+p0 + Γ−p1 (2.30)

∂p1

∂t
= Γ+p0 − Γ−p1. (2.31)

The probabilities p0 and p1 are related through p0 + p1 = 1 and so we can substitute

Eq. 2.30 into Eq. 2.31 and vice versa and, by using equations Eq. 2.3 and Eq. 2.4

for Γ+ and Γ−, obtain the stationary solutions which provide p0 = 1 − f(E) and

p1 = f(E). By assuming that the oscillating cantilever causes the difference in

chemical potentials between dot and 2DEG to also oscillate, E → E + δe(−iωt), then

the probabilities will oscillate:

p1 → p1 + λF (ω)δe(−iωt) (2.32)

p0 → p0 − λF (ω)δe(−iωt) (2.33)

Substituting equations Eq. 2.32 and Eq. 2.33 into Eq. 2.30 and Eq. 2.31 and lin-

earizing in δ we can solve for λF (ω) and using Eq. 2.28 and Eq. 2.29 to solve for the

resonance frequency shift, ∆ω, and dissipation, ∆γ [67].

∆ω = − ω0

2k0

A2Γ2

kBT

[
1

ω2 + (Γ)2

]
f(1− f). (2.34)

∆γ =
ω2

0A
2Γ

k0kBT

1

ω2 + Γ2
f(1− f), (2.35)

The magnitude of Eq. 2.34 and Eq. 2.35 as a function of ω/Γ (with normalized

units) is shown in Fig. 2–2 [37]. As long as the cantilever resonance frequency is less
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Figure 2–2: Plot of the dissipation and resonance frequency shift response
versus ω/Γ with normalized units using Eq. 2.34 and Eq. 2.35.

than the tunneling rate, then a change in resonance frequency can be observed. Con-

versely, the dissipation response is maximal when the tunneling rate and resonance

frequency are nearly equal, and falls off quickly for every order of magnitude away

from equality. This plot highlights a challenge of this technique: the ω/Γ ratio is

going to affect the signal, and since Γ is inherent to the sample, we want to have easy

access to cantilevers with high Q and the appropriate ω0 but this is not currently

aways possible.

In addition we are also provided with an expression for the tunneling rate (or

lifetime on the dot) of the electron [37,68]:

Γ = −2ω0
∆ω

∆γ
, (2.36)

Although the above equations for the frequency shift, dissipation and tunneling rate

of the electrons fit our data taken with a small oscillation amplitude very well, they
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could not describe the results observed for larger amplitude oscillations nor for a

shift in the Coulomb blockade peak as a function of temperature. By allowing for

degeneracy in the levels (which we had reason to believe was the case from the

peak spacing in the electron addition spectra in combination with observed level

degeneracies in InAs dots [18, 19, 21, 69]), we were ultimately able to account for

these observations.

2.4.2 Weak Coupling For A Degenerate Level

In order to include degeneracy into the above analysis, the Master equations

and probabilities have to be modified to include the disparity between the number of

ways an electron can be added to the shell (this is equal to the number of unoccupied

degenerate levels before adding the electron) and the number of ways to remove

an electron (this is equal to the number of occupied degenerate levels after the

electron has been added). Following the same procedure used above for a single,

non-degenerate level, we can now obtain the resonance frequency shift, dissipation

and tunneling rate for an electron tunneling into a shell with degenerate levels [67]:

∆ω = − ω0

2k0

A2Γ2

kBT

[
(nShell + 1)(ν − nShell)

ω2 + (φΓ)2

]
f(1− f). (2.37)

∆γ(VB) =
ω2

0A
2Γ

k0kBT

(nshell + 1)(ν − nshell)

ω2 + (φΓ)2

f(1− f)

φ
, (2.38)

φΓ = −2ω0
∆ωdip

∆γ
, (2.39)

where φ = (ν − nshell)f(E) + (nshell + 1)(1− f(E)). We refer to φ as the degeneracy

factor. The number of electrons already in the shell before adding a new electron is

nshell, and ν is the number of degenerate levels in the shell.
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Taking the derivative of ∆ω and ∆γ as a function of E reveals the maximum in

peak amplitude is a function of T , Γ, nshell, and ν, where Γ,nshell, and ν are fixed for

a given level. Each peak position thus has a unique temperature dependence which

can be used to identify the degeneracy within the shell, and we can observe the shift

of the peak along the energy axis with temperature. The degeneracy is responsible

for these shifts since an offset between dot and 2DEG energy alignment balances the

rates to add and remove electrons, and this maximizes tunneling thereby defining

the peak center [67]. This concept is depicted in Fig. 2–3. The gray region on the

right of each image represents the Fermi-Dirac population of the 2DEG, the black

dots are electrons already occupying a level, the white dots are electrons that will be

added to the level, and the dashed line is where maximal tunneling would occur for

a single, non-degenerate, dot level. An asymmetry between the number of ways to

add and remove electrons, emphasized by the arrows, shifts the location of the peak

maximum. Fig. 2–3(a)-(b) shows an example of a shell having two electrons, where

the first electron is about to be added (a) and then the second in Fig. 2–3(b). There

are two ways to add the electron in Fig. 2–3(a), but only one way to remove it, while

for Fig. 2–3(b) we have the opposite case with only one way to add an electron and

two ways to remove it. This causes the peaks of the first and second electrons to

move away from each other along the energy axis. The scenario for peaks 3 through 6

are depicted in Fig. 2–3(c-f). Once again the first half of the peaks (now peak 3 and

peak 4) shift in one direction and the second half (peak 5 and 6) are shifted in the

opposite direction with increasing temperature. The two main features of Eq. 2.38

that Fig. 2–3 highlights are: the peaks shift away from the center of the shell (the

first half of the peaks shift one way and vice versa) and the magnitude of the shift
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Figure 2–3: The asymmetry in the number of ways to add and remove
electrons leads to a shift in the location of maximal tunneling (i.e. a shift in
the Coulomb blockade peak maximum). This dot has six energy levels, with
two in the first shell and four in the second. The gray region on the right
of each diagram is the Fermi-population of the 2DEG. The black circles are
electrons that are already on a dot level (solid black line) and the dashed
circles are electrons that will be added. The dashed line is where the non-
degenerate energy level would line up with the 2DEG energy levels to have
maximal tunneling. These alignments for degenerate levels are shifted due to
the asymmetry between the number of ways to add or remove electrons. [67]
Image courtesy of Steven Bennett.

increases with an increasing discrepancy between the number of ways to add and

remove an electron [67].

2.4.3 Strong Coupling

For the same mean tip-sample gap, we can enter into the strong coupling regime

by increasing the cantilever oscillation amplitude until the charge degeneracy point

is no longer broadened by temperature, but by the tip oscillation. In this regime, we

observe non-linear, amplitude dependent, damping of the cantilever because during

one period of motion the cantilever can now swing on and off of a charge degeneracy

point leading to z-dependent rates to add (Γ+) and remove (Γ−) an electron [53].
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Γ±(z) = η±Γf [±E(z)] (2.40)

Where η+ = ν−nshell is the number of ways to add an electron, η− = nshell+1 is the

number of ways to remove an electron, and E(z) = µdot−µ2DEG = 2EC(1/2−N )−Az.

It is the asymmetry between the tunneling rates (i.e. η+ 6= η−) which ultimately

leads to skewing of the Coulomb blockade peaks observed in the frequency shift and

dissipation [53].

Since, in our experiments, the electron tunneling rate is similar to the resonance

frequency of the cantilever, the dot-cantilever coupled system has to be described

as a whole and we cannot treat the timescales separately. It needs to represent the

effect of the cantilever motion on the dot and also the reaction of the cantilever to

the number of charges on the dot. The modified Master equations are [53]:

∂tP0(z, ż) = L0P0 + Γ−(z)P1 − Γ+(z)P0 (2.41)

∂tP1(z, ż) = L1P1 + Γ+(z)P0 − Γ−(z)P1 (2.42)

which include a Fokker-Planck equation to describe the evolution of the cantilever’s

motion, Ln = ω2
0(z−zn−Fdrive/k0)∂ż− ż∂z+γ0∂ż ż, where z is the cantilever position

and ż the velocity. The equilibrium position, zn, of the cantilever is affected by the

number, n, of electrons on the dot: zn = An/k0.

A mean-field approach together with Eq. 2.41 and Eq. 2.42 provides a familiar

expression for the average values of the probability P1 and z [53]:

∂t〈P1〉 = Γ+(〈z〉)〈P0〉 − Γ−(〈z〉)〈P1〉. (2.43)
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Next, by assuming oscillatory motion for the cantilever, that the frequency shift

caused by the tunneling is small (i.e. ∆ω � ω), and that the total dissipation is

small (i.e. γ0 + ∆γ1 � ω0), we obtain an expression for the effective, amplitude-

dependent cantilever dissipation [53]:

∆γ1 =
ω2

0A

πk0a

∫ 2π/ω0

0

sin(ω0t)〈P1(t)〉dt (2.44)

Eq. 2.44 links the dissipation to the component of the time-varying dot charge,

〈P1(t)〉, which is out of phase with cantilever tip motion, as expected from Eq. 2.10.

The subscript 1 in ∆γ1 and P1 indicates which electron is being added to the dot,

here it is the first electron. To use Eq. 2.44, we need to solve for 〈P1(t)〉, or more

generally 〈Pn(t)〉, numerically. Although this task is relatively simple for n = 1 (we

just substitute 〈z(t)〉 = a cos(ω0t) into Eq. 2.43), it can become quite formidable

if multiple shells are involved as the number of Master equations increase with the

number of levels. However, in Chapter 4 we see that studying just one level al-

lows us to understand why the lineshape is skewed, and in which direction, and the

implications of the direction, which captures most of the interesting features. For

more details on what happens when the p-shell is included in the theory, please see

Ref. [53].

Unlike the lineshape for the non-degenerate Coulomb blockade peak (Eq. 2.35),

the lineshape for a peak within a degenerate shell (Eq. 2.38) is no longer symmetric

along the energy axis. In the weak coupling regime, this asymmetry is small and

could not be distinguished within the data, and so we could not claim the presence

of degenerate energy levels based solely on the peak lineshape which were described

well by both (Eq. 2.35) and (Eq. 2.38). This is not the case in the strong coupling

regime, where the increased coupling of cantilever and dot drastically enhances the
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Figure 2–4: The first peak in the dot is theoretically calculated for several
oscillation amplitudes. Large oscillation amplitudes (i.e. Aa� kBT enhance
the asymmetric peak lineshape [53]. Image courtesy of Steven Bennett.

asymmetric lineshape. Consider the first peak in the two-fold degenerate s-shell.

Fig. 2–4 shows the theoretical calculations of this peak for several oscillation ampli-

tudes. The large amplitude of the oscillating cantilever allows for tunneling over a

larger VB range because the voltage dropped across the 2DEG-dot is being modu-

lated to a larger extent. As the cantilever approaches the charge degeneracy point

for this peak, the rate to add an electron (Γ+) is limited by the two ways for the

electron to enter into the shell, but as the maximum of this peak is surpassed (and it

is more favourable to have the electron in the dot than not) the rate (Γ−) becomes

limited by the single way to empty the dot. Since fewer tunneling events leads to

less damping, this peak becomes noticeably more and more skewed for increasing

oscillation amplitude and the direction of the skewedness is away from the center of

the shell, just as the peak maxima shifted away from the center of the shell with

temperature.

2.4.4 Real-Time Measurement Of Electron Loading

Recall, in Section 2.4.3, the expression for the equilibrium deflection of the

cantilever is given as zn = An/k0 for force An (Hooke’s Law). In this section, we
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explore under what conditions we may be able to measure this deflection caused by

a change in the electrostatic force when an electron tunnels into the dot, allowing for

real-time read out of the dot occupation. This is opposed to the scenario discussed

thus far where the cantilever experiences damping over time caused by the single

electron tunneling.

Since the force required to add a single electron is just Fts = A, the deflection of

the cantilever z1 = A/k ∼ 20 fm for A ∼ 1×10−12 N and k ∼ 48 N/m. This value for

A is representative of what we have measured in the experiment. Although all-fiber

detection schemes have demonstrated deflection noise densities of 2 fm/
√

Hz [70],

this deflection is below the resolution of our microscope and furthermore although A

can be increased by reducing the tip-sample distance, we cannot increase A enough

to see real-time electron tunneling events. We can see this from the equation for

A, given in Eq. 2.25, where we see that A can be increased through increasing VB

or decreasing z. We cannot gain much by increasing VB as the large electric field

between tip and sample can potentially cause material to be field emitted from the

tip, compromising the experiment and potentially altering the dot. To determine

how A may be increased by decreasing z, we can use a capacitance model such as

the one by Hudlet et al for a sphere-plane, to describe Ctip [65]:

Ctip(z0) = 2πε0R ln(1 +R/z0), (2.45)

for tip radius, R, and electric constant, ε0. From this we can also easily obtain

∂Ctip/∂z0, and provide reasonable estimates for the remaining constants in A to

observe the z dependence. From this one also learns that we will not significantly

increase A by decreasing z, certainly not by a factor of 10 or more, and approaching

the cantilever is risky as there is still the potential for material to be field emitted
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from the tip with high electric fields and also there is a risk of snap-to-contact when

very small oscillation amplitudes are used. However, other types of samples could

have a much larger A without the need for larger voltages or smaller tip-sample gap.

The size of the deflection is much smaller than the smallest oscillation amplitudes

that we can use (∼ 2 Å), making the deflection of the cantilever a small change on

a large oscillation signal which is more difficult to measure. However, if we could

reduce the noise of our detector we could also oscillate the cantilever with smaller

amplitudes (the thermal oscillations at 4.5 K are 〈zosc〉 =
√
kBT/k ∼ 1 pm), making

this signal easier to detect. It would be a very hard experiment and we are not

equiped to perform it at this time but we believe it can be done.

As discussed in Chapter 1, single electron charge resolution is a well known

capability of AFM. So far we have not identified a discrete change in frequency shift

caused by a change in electrostatic force after a single electron enters the dot, however

this should be easier to detect than a change in AFM cantilever deflection and in

future experiments we will try to resolve this feature.



CHAPTER 3

Instrumentation

T
he precursor to the atomic force microscope, the scanning tunnel-

ing microscope (STM), was invented by Binnig, Rohrer, Gerber and Weibel

in 1982 [30]. The STM imaging capability offered unprecedented resolution of con-

ductive substrates, achieving atomically resolved images within the first two years of

operation. Images were produced by maintaining a fixed tunneling current between

a sharp metal tip and the surface while raster scanning the tip. The exponential

fall off of the tunneling current not only makes it more probable that the tunneling

current passes through the last atom on the STM tip before electrons tunnel into

the sample, but in addition makes the tunneling current a very good indicator of

the tip-sample gap. This leads to higher spatial resolution and provides a feedback

channel to control the tip-sample gap. In concert, these two properties led to the

success of the STM, highlighted by the 1986 Nobel Prize in physics for its inventors.

Although useful for imaging conductive surfaces, STM was unable to measure

non-conductive surfaces where electron tunneling was not feasible. In 1986 the atomic

force microscope, invented by Binnig, Quate, and Gerber [32], was based on the same

principles as the STM; namely, a cantilever with sharp tip placed in close proximity

43
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to a sample surface would lead to cantilever deflections (i.e. static mode AFM as

discussed in Chapter 2) due to tip-sample force interactions. By controlling the

cantilever deflection while raster scanning the tip, i.e. by keeping the interaction

force constant with a feedback loop, constant force images could be produced.

The first dynamic mode AFM ever used was amplitude modulation mode or

AM-AFM in 1987 [56]. In this mode the cantilever is driven into oscillation with an

excitation signal of fixed frequency and drive. When the cantilever interacts with

sample forces, the change in resonance frequency leads to a decrease in oscillation

amplitude which is used as a feedback mechanism. Since the cantilever tip is not in

contact with the sample, the imaging process is gentler on the tip and sample than

when operating in contact mode. The main drawback to this mode of operation is

the time required for high-Q cantilevers to acquire a new equilibrium amplitude since

this time is proportional to Q, i.e. τAM ≈ 2Q/f0 [58]. This is a disadvantage because

higher Q cantilevers are less influenced by thermal noise and are often obtained in

vacuum, where ultra-clean samples can be prepared and studied in-situ. The long

response time of the amplitude essentially means that at each location, each pixel, in

the image, the cantilever tip must remain over that one spot for τAM , and the large

Q factors make imaging infeasible.

The invention of frequency-modulated AFM (FM-AFM) in 1991 [58], which

provided the instructions for using the resonance frequency shift of an oscillating

cantilever as opposed to the change in amplitude, pushed the AFM into new envi-

ronments, in particular vacuum systems, and solidified its reputation as a powerful

surface science characterization tool. In contrast to AM-AFM, in FM-AFM the

transient response rate is independent of Q: τFM ≈ 1/f0 [58]. Since the minimal

detectable force gradient is inversely proportional to the square of Q [56], the ability
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to use a high Q cantilever is a huge advantage, particularly for dissipation measure-

ments since the background dissipation, γ0, is proportional to Q. Using FM-AFM,

the minimum force Fmin that can be detected by a thermally limited microscope

is [58]:

Fmin√
B

=

√
4kkBT

ω0Q
. (3.1)

Where B is the bandwidth of the FM-demodulator. At T = 4.5 K with k = 48 N/m,

ω0 = 150 kHz, and Q = 100, 000, the Fmin/
√
B ∼ 1 fN/

√
Hz.

Since all surfaces, regardless of their conductivity, will have forces which inter-

act with the cantilever, AFM is not restricted by the sample conductivity. In fact,

the robustness of AFM makes it suitable for a variety of samples and imaging envi-

ronments. For example, it is commonplace to find AFMs used to image biological

samples on glass or in liquids (where the samples can be kept alive), in ambient,

ultra-high vacuum, ultra-low temperature, and high-temperature environments. In

fact, AFMs tailored to each of these environments are commercially available.

3.1 Introduction to Low Temperature AFM

All types of AFM have their own set of challenges, however we are restricted by

the environment which best suits our sample. In order to access the Coulomb block-

ade regime for the quantum dots, we must operate at low temperature (T < 100 K).

Our home-built cryogenic AFM [71] was built for use at 4.2K (the temperature of

liquid helium). The original design and construction is described in the PhD thesis

of Mark Roseman [72]. Improvements and modifications to the microscope, most

notably the addition of a sample heater, are listed in the PhD thesis of Romain

Stomp [66]. An RF-modulated interferometer (for measuring the cantilever deflec-

tion) with 1550 nm wavelength was added later and is described in Ref. [73].



3.1 Introduction to Low Temperature AFM 46

Figure 3–1: The creep of the piezotube in the z-direction is plotted as
a function of file number at 4.5 K. We were collecting approximately 350
images over the same location for 1.5 hours and when the frequency shift
showed a noticeable change, the height was readjusted (this is the reason
for the step-like appearance). In 1.5 hours, the z-creep was approximately
1.5 nm. After 1.5 hours the creep is starting to stabilize.

Not only does working at lower temperature increase the likelihood of observing

quantum phenomena, but even classical properties which are thermally activated (e.g.

charge traps, dewetting) can be sufficiently slowed in order to investigate dynamics.

Working at low temperature also reduces the thermal noise of the microscope: the

thermal drift of the microscope body as well as the creep of the piezoelectric tube

beneath the sample is reduced so that the location of interest remains in the field of

view longer, in addition the thermal noise of the cantilever is reduced while the Q is

increased and a higher Q reduces the noise in tracking the resonance frequency. A

plot of the piezotube creep at 4.5 K is provided in Fig. 3–1. For comparison, after

the creep had stabilized during an experiment at 77 K and left idle, the creep was

about 28 nm in 13 hours. When the microscope is immersed in either liquid nitrogen

or liquid helium (with exchange gas at 4.5 K), the temperature is very stable, and

the piezo-creep will be the main cause of the image window moving with time.
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The main disadvantage to using a low-temperature AFM is the stress/strain

during thermal cycling leading to problems at low temperature. These problems

mainly include: misalignment of the moving parts, and the soldered wires and glued

parts disconnecting. In order to ensure success, great care must be taken in assuring

the microscope is in peak condition before cooling it down and in particular all

electrical loops must be checked. Another disadvantage of our microscope which

exacerbates this problem is the long turn-around time. Once the microscope is cold,

it needs to be brought up to room temperature before repairs can be made, and in

addition the Dewar needs to also warm up before the repaired microscope can be

put back inside. This process takes a minimum of two days. Once the microscope

has been placed in the Dewar, it takes a day to pump the gas out of the microscope

and another day to cool down. However, for the Coulomb blockade experiments,

it is important that the cantilever has a high Q factor, and since this is pressure

dependent you gain by reducing the pressure in the microscope as much as possible

before precooling. This takes a while for our microscope as the conductance of the

gas lines into the body is low (long, narrow lines). The pressure obtained before

precooling sets the lower limit for the pressure at lower temperatures. We typically

run the pump for about one week or more. Typical values of decent Q factors are: 500

(room temperature in air), 7,000 (room temperature at 3×10−5 mbar), 60,000 (77 K

at 7×10−5 mbar), and 100, 000−200, 000 (4.5 K with exchange gas at 3×10−3 mbar).

The stress and strain endured by the materials over such a large temperature

range demands that the microscope frame be built as symmetrically as possible, and

that all glues and other components be chosen with great care. Since our microscope

has the capability of applying a magnetic field up to 8T, it is also important that

the microscope not be made of magnetic materials.
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3.2 AFM Design

Fig. 3–2 shows a photo of the actual microscope and a simple schematic which

highlights the main features. The diameter of the microscope is limited by the bore

size of the superconducting magnet. The cantilever is glued above a piezoelectric

stack which is used for driving the cantilever. There are two “walkers” - one for the

optical fiber and the other for the sample - which move components along piezo-

electric stacks using stick-slip motion [74]. The “optical-fiber walker” approaches

the end of the fiber optic towards the backside of the cantilever, while the “sample

walker” likewise coarse approaches the sample towards the cantilever. Underneath

the sample is a piezotube which is then used for fine approach to the cantilever tip.

Great care must be taken when approaching the sample to the cantilever so that the

cantilever tip is not damaged. We use an automatic approach to safely bring the

sample towards the cantilever. To do this, after each coarse approach step of the

sample walker the piezotube extends while monitoring the frequency shift to detect

the interaction force, if no force is detected, the piezotube retracts and the cycle

repeats. Note that in order for this to work, each course step must be a fraction of

the extension length of the piezotube.

The Scanita [75] software controls the piezotube (both its extension/retraction

and raster scanning), applies the sample bias, and records all of the data. It also

displays the imaging information in real-time. Although these are the basic require-

ments of an AFM software kit, we prefer Scanita because it gives us more flexibility

than other commercial software. We have access to many channels for data acqui-

sition, we have the auto-approach feature just mentioned, and we have flexibility in

how we acquire the spectra built right into the software. Using Scanita, we can also

adjust the voltages applied to the two scan directions in order to compensate for
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Figure 3–2: An actual photo of the cryogenic microscope is shown beside
a schematic which labels the relevant features of the microscope. The bot-
tom plate in the schematic is 5 x 52 mm. The different components of the
body are slightly rotated in the schematic in order to more clearly label the
components.
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Figure 3–3: Power spectral density of the frequency shift of the cantilever
while approached to the sample surface, collected over a 300 s time window
and consisting of 300,000 points, showing several peaks at low frequency
in the data taken without the vibration isolation table. Data is from two
different experiments, and the noise at higher frequencies with the table may
be due to experimental differences.

a tilted sample. This feature makes it possible to shut off the distance regulation

feedback to collect constant height mode images.

Vitally important to the sensitive measurements made with an AFM are vibra-

tion isolation techniques. The microscope hangs from a bellows in order to decouple

the microscope from external vibrations. Recently, we purchased a passive vibration

isolation table (Minus K BM-1 bench top vibration isolation platform) and placed

the Dewar on it which further reduced the coupling of the microscope to the low

frequency oscillations of the building. Fig. 3–3 shows a noise spectra taken before

and after the vibration isolation table was installed at 77 K. Clearly, the vibration

isolation table is effective at decoupling the microscope to the building vibrations.

The vast majority of the data, including all of Chapter 4, presented herein was taken

prior to the installation of the vibration isolation table. Streaks in the images were

often caused by the elevator or someone walking by the microscope.
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We have built our AFM with features which can be especially useful at low

temperature: a heater [72] and superconducting magnet. The heater allows us to

do experiments as a function of temperature. The superconducting magnet (see

Ref. [72]) allows us to change the perpendicular magnetic field experienced by the

sample. The low critical temperature of the magnet means that we can only use it

during experiments performed in liquid helium. More details on the design of the

AFM can be found in the theses by Roseman [72], Stomp [66] and Cockins [73].

3.3 AFM Operation

As mentioned in Chapter 2, the AFM was operated in self-oscillation mode for

the experiments that were done in this thesis. In this mode the cantilever is oscil-

lated by applying the phase-shifted deflection signal to the piezo stack underneath

the cantilever, referred to as the bimorph excitation. We use the commercially avail-

able silicon Nanosensors PPP-NCLR cantilevers with nominal spring constant of

48 N/m. We sputter coat the cantilevers with a 10 nm titanium adhesion layer and

20 nm of platinum to ensure electrical conduction at low temperature. Typically, the

cantilevers have a resonance frequency of 160 kHz.

Cantilever beam deflection detection is done via a fiber optic laser interferom-

eter [76]. The interferometer consists of the reflection of the main reference beam

from the glass-air interface at the cleaved end of the optical fiber (optimally ∼ 4% of

the light) and the reflection from the back-side of the cantilever. We use a 1550nm

RF-modulated laser for this purpose. The noise floor of the interfeometer is about

60 fm/
√

Hz. For more details about this laser see Ref. [73]. Placing the fiber as close

as possible to the cantilever beam increases the detection sensitivity. Most impor-

tantly, however, is that the cantilever-fiber gap is adjusted so that the interferometer

signal is centered in the region of steepest slope as here cantilever motion leads to
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the greatest change in interferometer intensity. The sensitivity of the interferometer

signal is given by [77]:

S =
2πVpp
λlaser

(3.2)

Where Vpp is the peak-to-peak voltage of the interferometer signal and λlaser is the

wavelength of the laser. Eq. 3.2 converts the cantilever deflection signal into nanome-

ters and is used to adjust the drive amplitude to obtain the appropriate oscillation

amplitude. For λlaser = 1550 nm and Vpp ∼ 10 V, Eq. 3.2 gives S ∼ 0.04 V/nm, with

∼ 2 mVrms noise on the signal. In self-oscillation mode, the detection signal itself is

used to drive the cantilever. The amplitude of the detection signal is compared to

the setpoint and the drive signal is modified (via a PI controller) in order to main-

tain the setpoint. The detection signal must be phase shifted before it is reapplied

to the cantilever. The bimorph (drive) amplitude is provided by the automatic gain

controller (AGC) as the dissipation of the cantilever [78]. In practice, at 4.5 K we

are able to oscillate the cantilever with amplitudes as small as ∼ 0.2 nm but the

oscillation becomes unstable for smaller values.

The block diagram for self-oscillation mode is shown in Fig. 3–4. In this mode,

the sinusoidal position signal is fed into a phase-lock-loop (Nanosurf easyPLL-plus)

which measures the oscillation frequency of the cantilever and compares it to the

stored reference value to provide the resonance frequency shift, ∆ω, which we here-

after refer to as the frequency shift. The frequency shift is used as feedback to

regulate the tip-sample gap. Once amplified to high voltage, this signal is applied

directly to the piezotube underneath the sample, which expands or retracts to com-

pensate for the change. This can be done while raster scanning to produce an image

taken at constant frequency shift. This is the typical protocol for producing, what is
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Figure 3–4: Block diagram for self-oscillation mode [78]. The left-box
isolates the components for maintaining the oscillation amplitude (the AGC),
while the right contains the components used for frequency tracking (the
PLL).
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referred to as, topography or height images, where we are interested in the piezotube

extension that was required to maintain a constant frequency shift. In this thesis,

constant height images are also frequently used. In contrast, constant height images

are produced by recording the cantilever frequency shift and dissipation while raster

scanning the tip with the distance-feedback off.

In addition to images, which provide spatial information over our sample, we can

also collect spectra over one location while changing the tip-sample gap, bias voltage,

cantilever oscillation amplitude, or by not changing anything at all and collecting

data as a function of time. The use of images in combination with spectra often

greatly assist data interpretation.

3.4 Experimental realization of QDs: Sample Preparation

In order to have a quantum dot, we must have carrier confinement. In semi-

conductors, the potential well which confines the carriers are formed from the band-

alignment in heterostructures. The sandwiched material (the dot) requires a lower

conduction band to confine electrons and/or a higher valence band to confine holes

[79].

Self-assembled quantum dots are formed by a process called Stranski-Krastanov

[80] growth where strain between layers drive the spontaneous formation of islands

out of the strained layer. Using chemical beam epitaxy, where gaseous materials

build on a substrate monolayer by monolayer, a significant difference between the

lattice of the deposited material and the substrate results in only the first couple

layers being able to form into a two-dimensional layer. The crystallized material is

strained by the lattice constant of the underlying substrate. A critical thickness is

reached where it is energetically favourable to reduce the strain by the spontaneous

formation of regularly shaped islands. The shape and size can be controlled by the
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Figure 3–5: Schematic of layers of the sample with the biased AFM
cantilever.

strain between the two materials, the temperature, and speed of growth [52]. In our

samples these InAs islands are typically about 50 nm in diameter and 1-12 nm high.

Although these structures tend to grow with faceted edges, many of the smaller

structures we observe (of height 6 nm or less) lack well defined borders and look

slightly irregular in topography.

Our samples are grown at the National Research Council of Canada by Sergi

Studenikin and Philip Poole [81]. Our sample consists of the following layers: ran-

domly positioned on the sample surface are self-assembled InAs quantum dots, sep-

arated from a two-dimensional electron gas by a 20 nm tunneling barrier made of

InP (Fig. 3–5). More specifically, the layers of the sample are: 460 nm undoped InP

grown on top of an insulating InP substrate, 10 nm Si-doped InP layer, 10 nm un-

doped layer, 10 nm In0.53Ga0.47As layer, 20 nm undoped layer, and a 1.82 monolayer

of InAs.

In the past, we would heat the sample to 120◦C for 1 hour while pumping out

the microscope to more efficiently remove the water layer from the sample surface.

However, we no longer heat the sample since we obtained the same quality of im-

ages without this step and we want to exercise as much caution with our samples
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as reasonably possible. Electrical contact to the 2DEG is done via indium diffusion

through the upper layers of the sample. At 4.5 K the sample is exposed to a higher

concentration of helium gas (typically 3 × 10−3 mbar) which we use as exchange

gas to keep the microscope from warming up due to thermal coupling to the envi-

ronment. At other temperatures we typically operate at pressures of approximately

1× 10−4 mbar or less. Unfortunately, our samples are not fabricated and studied in

situ and thus are often exposed to the lab air, however we have not yet noticed any

change in the quality of the samples overtime.



CHAPTER 4

Quantum Dot Energy Level
Spectroscopy

T
he charging energy of some of the InAs dots is so large that even

at 77 K the dots are in the Coulomb blockade regime. This, in combination

with large ∆E, allows us to study the changes in Coulomb blockade peaks over a

large temperature range. This section begins with a qualitative overview of the fea-

tures observed in the dissipation images before moving into the more quantitative

analysis of the electron addition spectra obtained over isolated quantum dots. The

final section of this chapter will cover our progress towards the analysis of multi-dot

complexes.

4.1 Coulomb Blockade AFM Images

The theory in Chapter 2 on the Coulomb blockade peaks as a function of sample

voltage focused on the dissipation for a fixed tip position above the sample. In

a constant height image, the sample is raster scanned beneath the tip with the

distance regulation feedback off. As the tip-dot distance changes the voltage dropped

across the dot-2DEG also changes since VB is held constant. The fraction of VB

that is applied between dot-2DEG is given by the dimensionless lever arm, α =

57
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Figure 4–1: Dissipation images showing sequential loading of electrons
into a quantum dot through increasing the bias voltage. The shape of the
InAs island is outlined in the first image, with the taller region also outlined
by a more closely spaced dashed line. This data was collected at 4.5 K, with
0.8 nm oscillation amplitude. These images took approximately 20 min. to
complete. The scalebar is 20 nm. All images share the same colorbar with
scale 0 − 0.85 Hz for all except the last image, with scale 0 − 2 Hz. The
last image was taken at a later time in the experiment and so the image is
slightly shifted. [67]

α(x, y, z) =
Ctip

CΣ
. We observe rings in the dissipation images because when the

voltage satisfies a charge degeneracy point, the resulting single electron tunneling

events increases cantilever dissipation, and for a given charge degeneracy point the

equipotential traces a rough ring around the dot (the locations where the tip-dot

distance are electrostatically equal). The rings are thus rings of constant α. The

ring furtherest from the dot center corresponds to the first charge degeneracy peak

since that ring occurs at the largest tip-sample separation. Fig. 4–1 shows an example

of the dissipation images for an isolated quantum dot at multiple sample voltages.
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Figure 4–2: Comparison of InAs dot topography image (a) to the constant
height images of the frequency shift (b) and dissipation (c). (b) and (c) were
taken simultaneously. Approximate locations of dots are marked with X’s
in (a). (a) was taken at T = 77 K, ∆ω/2π = −9.4 Hz, a = 1.6 nm and
VB = −0.35 V. (b) and (c) were taken at T = 4.5 K, with a = 0.4 nm,
VB = −8.0 V, and z0 ∼ 19 nm. Scalebar 20 nm. [67]

Figure 4–3: Large scan range AFM topography (a) and dissipation (b)
images taken simultaneously with VB = -4 V, ∆ω/2π = -29 Hz, and a = 8 nm
at 77 K. The correlation between dissipation features and quantum dots is
clear in this image. Notice that taller dots tend to have less pronounced
dissipation. Scalebar 200 nm.
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4.1.1 Qualitative Features of Dissipation Images

Since the frequency shift images are influenced by the sample topography, the

rings are much more visible in the dissipation images and so we focus on the dis-

sipation images here (Fig. 4–2). However, we note that there is a possibility that,

for some tunneling rates, the rings will be more apparent in the frequency shift as

discussed in Chapter 2.

To choose which dot to study, we first take a relatively large image of about 1-

2 µm in order to find isolated dots with large dissipation signals. Often, smaller dots

are preferred because the larger EC makes it easier to identify individual rings and

we generally observe larger dissipation signals from the small dots. Taking an image

with large oscillation amplitude, e.g. a ∼ 10 nm, makes it easier to identify these

conditions since the large oscillation amplitude fluctuates VB to a greater extent,

making it more likely to find degeneracy points. Fig. 4–3 shows a large scan range

topography and dissipation image taken simultaneously. This image highlights that

the vast majority of dissipation features at large negative voltages are associated

with electrons tunneling into the quantum dots (occasionally additional features are

observed, these are discussed in Chapter 6). Fig. 4–4 shows the effect of the oscillation

amplitude on the ring width in the dissipation images. There is increased dissipation

where multiple rings overlap. The near doubling of the ring height in these regions of

overlap suggest that the oscillating cantilever is populating two levels simultaneously.

The resolution in ∆γ and ∆ω images is very sensitive to scan speed. The

time per pixel spent by the cantilever at each location plays an important role in

image quality, especially since typical imaging speeds would certainly prevent one

from observing the Coulomb rings from most dots. In a 256 × 256 pixel image, we

usually require at least 1 s/line to barely resolve the rings in a 500 nm × 500 nm
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Figure 4–4: Dissipation images taken in constant height mode with VB
= -8 V and a = 1.6 nm (a), 0.8 nm (b) and 0.4 nm (c) at 4.5 K. As the
cantilever oscillation amplitude is reduced, the rings become more narrow.
All of these oscillation amplitudes are large enough to broaden (and reduce
the amplitude of) the rings. Larger oscillation amplitudes can lead to the
overlap of rings, which increases the dissipation as more tunneling occurs.
Scalebar is 20 nm.

image, but in general we must use 2-8 s/line. A typical image will require 256

lines × 4 s/line = 17 min to complete. Scanning more slowly increases the signal

to noise, which is important because the signal is small and the rings are narrow.

It is also important to perform the dissipation images using constant height mode

with the gap-control feedback loop turned off. This leads to less distortion of the

rings as the raster scanning cantilever is not simultaneously following the surface

topography; furthermore it simplifies analysis as the tip-dot distance is much more

straight forward to calculate (assuming a point source for the dot).

As alluded to in the previous chapters, it is assumed that each InAs island

constitutes a single quantum dot, however the dissipation images revealed that most

islands actually are comprised of multiple dots! This would be very difficult to

determine using other techniques which do not allow for spatial resolution. Transport

measurements, for example, which attach electrodes close to the dot, would measure

conductance spectra which would consist of the Coulomb blockade peaks from several
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quantum dots and it would be difficult to know how many dots are participating.

In general it is often assumed that each island corresponds to one quantum dot, but

our results clearly show that this is not always a valid assumption.

Is it possible that the tunneling we observe is not between 2DEG and dot but

across some other barrier? It is possible, however we have good reasons to believe it is

a 2DEG-dot tunneling process. Most importantly, the dots do show some correlation

between the size of the InAs island and the charging energy of the dot; taller islands

tend to have smaller EC and vice versa, and although there are multiple dots in one

island we note that the islands are often irregular in shape and often dot positions

seem correlated with these irregularities (see Fig. 4–5). We also note that the major-

ity of rings are centered only in locations where InAs islands are easily identified (see

Fig. 4–3). One observation worth pointing out here is that the quantum dots often

are not centered with respect to the island, and can be located anywhere within the

island perimeter. Finally, usually there are 2-4 sets of concentric rings within a given

island, and although this seems like a lot, if the rings were originating from traps at

the structure boundary or surface, then we would expect to see a much larger density

of rings covering the entire surface of the dot. It would be nice to further support

this argument (that the tunneling is really happening between 2DEG and dot) by

comparing the measured tunneling rate to values calculated by other means, however

currently no other technique is capable of doing so for our dots. Our technique is

the only one which has measured the tunneling rate between a 2DEG and uncapped

self-assembled dot.

The images also reveal some details about the quantum dot environment. For

example, the rings are not perfectly circular or uniform in width. Both of these

features can be noticed in Fig. 4–1. The deviation of the equipotential from a perfect
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Figure 4–5: Topography of InAs island (a) and corresponding dissipation
images taken in constant height mode at 77 K (b), and 4.5 K (c). At both
temperatures, this dot seems to be affected by changes in the electrostatic
background. In (b) the number of electrons in the dot is fluctuating by one,
as observed by the streaky outer ring. In (c), while the cantilever is scanning
in the upwards direction, the energy level of the dot seems to shift suddenly
below the energy level of the 2DEG. Also observed in (c) is the first streaky
ring of another dot. Perhaps this new dot, which seems to have a shallow
confinement potential, was the cause of the streaky ring in (b). Notice how
in (c) the two observed dots roughly correlate with the island structure in
(a) [67].

Figure 4–6: Dissipation images taken in constant height mode at 4.5 K
with 0.8 nm oscillation amplitude. The slow scan direction is upwards in
all four images. In (a) a sudden and dramatic switch of the confinement
potential of an isolated quantum dot (the same dot as shown in Fig. 4–1)
results in a double quantum dot (VB = −8.0 V). The double dot is confirmed
in (b) at VB = −9.0 V. To reverse the change, we image with a positive
bias voltage over the same region (c) (VB = +6.8 V). In the following image,
we confirm that the dot has returned to its original, single dot, confinement
potential, by imaging with VB = −8.0 V (d). [67]
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circle indicates that the electrostatics of the environment are statically interfering

with the voltage dropped across dot and 2DEG. For example, this could be caused

by the shape of the InAs structure, a nearby charge deposition or a significantly

deformed tip shape.

The electrostatics of the environment can also dynamically affect the charge state

of the quantum dot. In the images, we sometimes see a ring that is streaky in some

region which indicates that, although in other locations along the ring the tip can

stay on the charge degeneracy point, it cannot do so here because of fluctuations.

Such fluctuations must be caused by the confinement potential of the dot being

influenced by some unstable charge configuration. Fig. 4–5 shows an example of a

dot with a “streaky” ring.

There is also a middle-ground for the electrostatic influence on the dots, where

a bistable charge configuration can allow for us to image two different confinement

potentials for one dot. Interestingly, especially from an applications point of view

(both for failure analysis or for new types of switches), by imaging with a positive

voltage these changes are often reversible! Fig. 4–6 shows an example of such a dot.

Imaging this dot at a large negative voltage frequently led to a change in the dot

from a single isolated dot to a double dot, and by scanning with a positive voltage

we were able to return it to its previous condition. These changes are also seen in

the spectra, akin to observations reported from some transport measurements [82].

One might suspect that these changes in the images were caused by some change in

the cantilever tip. However, although one dot may undergo a switch, not all dots are

effected, implying no tip change (see Fig. 4–7).

Finally, future projects will investigate the ability to manipulate the confinement

potential of the dot. In Fig. 4–8, we show a proof of principle demonstration. Here,
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Figure 4–7: The upper isolated dot shown in (a) undergoes a switch in
confinement potential in (b). The new shape of the dot is confirmed in (c).
Note how both the energy levels of the dot with respect to the 2DEG and
the shape of the dot are changed. The lower dot in the images, however, is
unaffected. In (d) the rings from (a) are overlaid on (c) and it is clear that
the lower dot has not changed. All images were taken with VB = −8.0 V at
4.5 K using constant height mode. This change also was reversed by imaging
with a positive VB as in Fig. 4–6
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we were looking at the quantum dot in Fig. 4–8(a) and crashed the tip nearby, in

the lower left corner of the image. The confinement potential of the larger dot was

affected while the nearby small dot on the right was much less so. From Fig. 4–

8(a) to Fig. 4–8(b) it looks like the large dot went from one large or two strongly

coupled dots into two clearly separated dots. This is especially apparent in Fig. 4–

8(c). Kelvin Probe Force Microscopy [83] was used to simultaneously obtain the

topography [Fig. 4–8(d)] and variation in surface potential [Fig. 4–8(e)] which showed

that the tip clearly crashed into the sample [the depression in Fig. 4–8(d)] and caused

a change in the the uniformity of the surface potential [Fig. 4–8(e)]. Examples such

as these are convincing evidence that we can influence the dot confinement potential,

which has numerous interesting possibilities.

Although it is relatively easy to observe the effect the environment is having

on the dot, and maybe even to obtain an intuitive understanding of the possible

mechanisms, characterizing the cause with indirect information is challenging. Nev-

ertheless, we have investigated some methods to characterize different sources of

electrostatic noise and these are discussed in Chapter 5.
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Figure 4–8: The dissipation image in (a) was taken before a tip crash
and (b) afterwards. The confinement potential is obviously affected by the
charge deposit at the crash site [lower left of the image in (b)]. In (c) we
zoom out slightly to inspect the crash site. The voltages in the first three
images are: -6 V, -6.5 V and -6.7 V. In (c) the dissipation is lower because
the cantilever scanned the image more quickly. The dissipation images are
shown in black and white here to be able to distinguish more easily between
the rings and the increased dissipation resulting from the crash site. From
the Kelvin Probe Force Microscopy images of the topography (d) and con-
tact potential difference (e) taken simultaneously, we see that the tip crash
created a depression in the sample that is charged. The Kelvin Probe Force
Microscope images applied an additional ac-voltage to the tip of 0.6 Vrms, at
a 1 kHz modulation, and the lock-in time constant was 3 ms. Scalebar in all
images is 20 nm. Oscillation amplitude was 4 nm.
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4.2 Electron Addition Spectra

The electron addition spectra that we acquire are always taken as close to the

middle of a dot as possible, in a dissipation image this corresponds to the center

of a set of concentric rings. One of the main goals of the electron addition spectra

analysis is to obtain the lever arm, α, as this parameter converts the voltage axis

into energy so that we can get an estimate of the charging energy of the dot. So far,

the only way we have of doing this is to obtain thermally limited Coulomb blockade

peaks by increasing the temperature and reducing the oscillation amplitude until

the peak lineshapes are thermally broadened so that fitting the peak lineshape to

Eq. 2.38 determines α. Similarly, thermally broadened peaks are also required to

calculate the tunneling rate, Γ, otherwise the large oscillation amplitude reduces the

peak height and broadens its width and it is difficult to obtain an expression for Γ

with peaks of this lineshape theoretically. Thus, in order to quantify some physical

properties of the dot we need to heat the sample and take a voltage spectrum, from

which we can know α, Γ, EC , and ∆E for the n-electron state. In addition, from

multiple voltage spectra as a function of oscillation amplitude, we can determine

the shell structure and the shell splitting, ∆E, for the ground state electron. To

be able to measure ∆E in this way, we need to perform excited state spectroscopy

measurements. This is discussed further in Chapter 6.

4.2.1 Obtaining the lever arm, α

In order to have an estimate of the lever arm, we performed Finite Difference

Modeling (FDM) of a tip 20 nm above a 20 nm InP sample sitting on an electrode.
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Finite Difference Modeling of Cantilever Tip and Sample

Following the approach of [84,85], the cantilever tip was modeled as a cone with

a hemi-spherical tip, making the tip-gap-sample system cylindrically symmetric. The

system is divided into a number of volume elements, each given a dielectric constant,

ε, and initial values for the charge density, ρ, and electrostatic potential, u, and the

MATLAB program iteratively solves the Poisson equation and potential simultane-

ously until the result converges. The motivation for writing an iterative program,

as opposed to using a software package, was to eventually use a backelectrode with

a voltage-dependent charge-density (such as in a 2DEG), and also to allow for the

flexibility of placing a quantum dot somewhere other than directly underneath the

tip (towards 3-dimensional modeling). The results discussed here do not include a

quantum dot, however the heights of the dots that we use to study Coulomb blockade

are often sub nanometer (which is below the mesh size of this simulator) and the tip

is usually about 20 nm away from the surface, so we do not expect that adding the

dot will alter the results significantly.

The initial conditions for the sample at 1 V and the tip at 0 V are listed in the

table below.

Material ε u (Volts) ρ

Metal (Inside) 1011 1V (sample), 0V (tip) 0

Metal (Surface) 1 1V (sample), 0V (tip) Calculated Surface Charge

InP 12.5 1 V 0 (insulator at low temperature)

Vacuum 1 0.5 V 0

We use the symmetry of the system to simplify the calculation into a two-dimensional

system consisting of a rectangular matrix with one edge along the tip axis. The
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Figure 4–9: (a) The potential and (b) electric field lines of a 20 nm radius
tip with 40◦ cone angle and 20 nm tip-sample gap. (a) is 550 x 550 nm, and
(b) is 60 x 40 nm.

outside edges of the matrix require boundary conditions. Since the bottom material

is metallic, the ρ and u need not be calculated there (ρ = 0 and u is fixed within the

metal) and only the surface charge needs to be calculated (using Poisson’s equation).

The top edge is grounded (held at 0 V) in an attempt to simulate the grounded

cantilever beam and microscope structure. The vertical edges are given the potential

of the adjacent horizontal volume.

Using the initial and boundary conditions, the program iteratively solves for the

potential and charge density simultaneously. An example for a tip with 20 nm tip

radius and 40◦ cone angle, and 20 nm tip-sample gap is shown in Fig. 4–9. The

voltage within the vacuum falls off as expected for the given boundary conditions

[Fig. 4–9(a)], and the electric field lines are perpendicular to the metal surface [Fig. 4–

9(b)]. The charge on the tip and sample is calculated from ρ, from which we can

calculate the capacitance. We use the voltage dropped across the sample to get

an estimate of the lever arm α and can compare how the lever arm changes as a

function of tip cone angle [Fig. 4–10(a)], tip radius [Fig. 4–10(b)], or tip-sample gap

[Fig. 4–10(c)-(d)]. Fig. 4–10(a) reveals that the cone angle has little effect on α.
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Figure 4–10: Change in α for different tip cone angles (a) and radii (b).
In (a) the tip radius is 20 nm and in (b) the tip cone angle is 40◦. For (a)
and (b) the tip-sample gap is 20 nm. The change in α along the surface for
different tip-sample distances (c) for a tip with 20 nm radius and 40◦ cone
angle. In (d) the value in (c) directly underneath the tip is plotted to show
how α changes with tip-sample gap.
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The tip radius, however, has a much stronger influence on α. Fig. 4–10(b) and the

inset show that a larger tip radius leads to a larger voltage fall-off between surface

and 2DEG, and with increasing tip radius the result approaches that of a parallel

plate capacitor. This is observed for the 400 nm tip radius where the voltage falloff

between tip and sample is linear, and in the inset where the voltage falls off much

more gradually as the distance from the tip axis increases. The voltage falloff along

the sample surface gives an indication of how the α changes with lateral position

which shows up in the AFM images, but in addition gives us an indication of the

uniformity of the voltage over the quantum dot which would affect the confinement

potential and dot wavefunction. We usually use a 20 nm tip-sample gap, and from

Fig. 4–10(c), we observe little change (a maximum of 9 %) for the first 20 nm away

from the tip-axis which corresponds to a 40 nm diameter dot. A diameter of 40 nm

is a typical value for the diameter of the islands so it is reasonable to assume that

the dots are less than this value. Finally, we plot the values from Fig. 4–10(c) for

closest approach to show the change in α as a function of tip-surface gap in Fig. 4–

10(d). From Fig. 4–10(d) we see that it is reasonable to assume a linear relationship

between α and tip-sample gap over distances of 15 nm as long as the minimal gap is

at least 15 nm.

Collecting data for comparison with the model for α is difficult because large

voltages and small tip-sample gaps could result in field emission of tip material onto

the sample. For this reason, at this point the model is used only for providing rough

estimates of the lever arm.

Experimentally Determining the Lever Arm, α, EC, and ∆E

In order to experimentally determine the lever arm, we need to heat up the

sample and reduce a so that the peaks are thermally broadened and not broadened
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by the oscillation amplitude of the tip. Currently, we are limited to an oscillation

amplitude of approximately 0.2 nm before the oscillation is lost. Experimentally,

in order to reach such small oscillation amplitudes, we need to disable the PLL

safety feature which withdraws the sample when the PLL becomes unlocked. This

needs to be done even while imaging because the PLL will intermittently become

unlocked from the resonance frequency when using very small amplitudes, however

for the majority of the time the PLL remains locked and the signal can be acquired.

Although a less stiff cantilever would be more sensitive, in order to prevent a jump-

to-contact event at small oscillation amplitudes it is important that the cantilever

does not stop oscillating, and this is more likely to be achieved with a more stiff

cantilever. This makes it difficult to reduce the oscillation amplitude even further

without changing the microscope or cantilever design. One option may be to use a

high-aspect ratio tip [54, 73]. These tips are long and thin which reduces the force

on the tip shank and thereby lessens the risk of jump-to-contact.

For thermally limited peaks at a given tip-sample separation, we can obtain a

quantitative value for α by fitting the peak to the expected lineshape using Eq. 2.38

(an example of fitting all six peaks to Eq. 2.38 is shown in Fig. 4–11). The value

that we get, 0.036 ± 0.003, for the thermally broadened peaks [see Fig. 4–14(a)],

agrees very well with the value expected by the electrostatic model (Fig. 4–10). 1

1 Since the lever arm is a function of the tip-dot and dot-2DEG capacitances, i.e.
α = Ctip/CΣ, we can assume that it will not change as long as the cantilever is held
at the same tip-sample separation. This is not necessarily the case if α is a function
of voltage, for example due to band-bending or deformation of the dot confinement
potential [4]. Since we obtain decent fits to all six peaks using the same value for
α, we assumed that we could neglect these details. However, this does point out
that, since each dot is different in size, α will be dot-dependent and so α needs to
be determined for each dot.
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Figure 4–11: Residual plot of the dissipation compared to theory. Data
was taken over an isolated quantum dot at 30 K with a = 0.4 nm.

Figure 4–12: (a) Voltage spectra at different tip-sample gaps. (b) α(z0)
from the data in (a) with a linear fit. Data taken at 77 K.

For thermally limited peaks, such as those at 77 K, we can do voltage-spectra as a

function of tip-sample gap distance, z0, to obtain α(z0) and confirm that over small

distances α linearly depends on z0. Fig. 4–12 shows this data.

If we plot the imaging voltage of the charge degeneracy point for each ring as

a function of tip-dot distance, we can analyze the manner in which the rings spread

out with distance and thereby determine α(r), with r being the distance between



4.2 Electron Addition Spectra 75

Figure 4–13: (a) 2D plot over the isolated dot in Fig. 4–2 created by
repeatedly scanning over one line as a function of VB. From (a) we can
determine α(r)/α(r0) and, by knowing the separation in Coulomb blockade
peaks at r0, we can use this ratio to predict the positions of the other rings
as shown in (b) for one half of the image in (a). In (b) we have used the
change in the blue ring with distance to predict the positions of the other
rings with position. The predicted locations are in black.
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dot and tip, from a sequence of voltage images (for example, one could use Fig. 4–

1). Alternatively, one can scan one line for several voltages and construct a voltage

versus distance 2D plot as shown in Fig. 4–13(a) for the upper dot in Fig. 4–2. From

Fig. 4–13(a) we can extract the ring voltage as a function of tip-dot distance. Since

we know the charge degeneracy point must always be met in order to have tunneling,

we know α(r)V (r) = α0V (r0) along the rings, where α(r) and V (r) are the lever arm

and voltage required to meet the charge degeneracy point at a tip sample distance

r, and α0 and V (r0) are the lever arm and voltage required to see the ring when

the tip is directly over the dot. By plotting α(r)V (r) we observe that α(r) is well

described by a linear relationship over these dot-tip distances. We can use this result

to estimate the separation of the rings as a function of distance and compare the

results to what we actually measure. This graph is shown in Fig. 4–13(b). In this

graph, by accounting for how the lever arm decreases with distance r for the first

ring (blue), we can account for the spreading out of the other rings (black lines). We

can compare plots of data in Fig. 4–13(a) to the plots of the simulation in Fig. 4–

10(a) and (c) to observe that the simulation captures the lineshape of the spatial

dependence of α very well.

4.2.2 Calculating EC From α

Once α is known, it is straightforward to obtain an estimate for the charging

energy, EC = 1
2
αe∆V , where ∆V is the voltage difference between the first two

peaks (as long as these energy levels are degenerate, e.g. due to spin-degeneracy). In

the classical regime of Coulomb blockade the peaks will be evenly spaced with 2EC ,

however in the quantum regime the quantized energy level spacing can significantly

affect the peak spacing. Not only are we able to detect the ∆E shell spacing, but

in addition the peaks are not equally spaced and in fact move as a function of
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temperature at different rates and directions due to level degeneracies (discussed in

Chapter 2). These two properties make our values for EC and ∆E estimates which

can be improved by extrapolating to T = 0 K.

4.2.3 Determining the Shell Structure By Temperature

The shell structure can be determined by varying the temperature, oscillation

amplitude, or magnetic field. Here, we do so via temperature which, to our knowl-

edge, is the first time the shell structure has been verified using a temperature ex-

periment even though the results were predicted theoretically in 1991 [86].

As discussed in Chapter 2, having degenerate energy levels within the dot shifts

the Coulomb blockade peaks along the energy axis as a function of temperature.

The rate at which they do so is determined both by the number of total levels

ν, and the number of electrons nshell, in a degenerate shell. Fig. 4–14(a) shows

several voltage spectra taken over the same isolated dot at several temperatures.

The positions of the maxima in the data in Fig. 4–14(a) have been repositioned in

order to compensate for varying tip-dot distances influencing the peak separation,

and so is useful only for demonstrating the lineshape fit at various temperature. To

do this, all of the first peaks for each temperature were aligned and then the voltage

axis of each curve was rescaled (by a maximum factor of 1.088) so that the second

peak maxima was aligned with the corresponding theoretical peak maxima, and the

amplitude of the peaks were left unaltered. However, the graphs in Fig. 4–14(b)-

(c) plot the actual voltage difference in peak maxima as a function of temperature,

where now these variations in peak location are represented with errorbars. The

energy separation of the peaks is less sensitive to the tip position than the individual

peak energies. The errorbars represent how well the difference between peaks was

reproduced at one location and temperature, and therefore represents mainly the
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Figure 4–14: (a) The Coulomb blockade peaks of the first two electrons.
Increasing the temperature broadens the peaks which is explained well by
the theory (Eq. 2.38). (b) The separation between the first two peaks as a
function of temperature. (c) The separation between peaks 3 and 6 and peaks
4 and 5 as a function of temperature. (d) Separation between the dissipation
and frequency shift peak for the third peak as a function of temperature with
theoretical fit. [67]
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error in changing the tip-dot distance. For example, points that lie further from the

general trend probably resulted from the tip being placed off center (i.e. not over

the same location spatially) since at each temperature the dot center needed to be

relocated, while points with large errorbars are probably the result of a change in

tip-dot height (caused by piezocreep, for example).2 By setting the energy derivative

of Eq. 2.38 to zero to solve for the peak position as a function of T , we find the peak

position is linearly dependent on the temperature with a prefactor that depends

on ν, nshell, and Γ (as long as we are in the ∆E << kBT regime). The resulting

slopes are plotted with the data where the only fit parameter is the 2EC(T = 0)

value which is 31 meV for this dot which agrees well with spectra taken at 4.5 K.

The difference between peaks 2 and 3 at 4.5 K is 42 meV, so that we can estimate

∆E = 11 meV. Fig. 4–14(b) is of particular interest because here we were able to

determine the difference between the peak centers up to 95 K, and observed that

these points did not follow the trend at all. However, at these temperatures the

energy splitting between the s and p shells (approximately 11 meV) is comparable to

the thermal energy of the electrons. In effect, this makes the s and p shells effectively

degenerate, we can account for this numerically to obtain a much better fit to theory

(blue curve) [67]. These added levels make the second peak belong to the first half

of the new shell versus the second half of the s-shell and so it reverses its direction

of movement along the energy axis so that now the first two peaks are traveling in

2 Since the sample needs to be retracted each time the temperature is increased
(due to thermal expansion of the sample and changes to the cantilever Q and ω0), at
each temperature the center of the dot needed to be relocated, making these types
of errors inevitable but they could be reduced by collecting more sets of data at each
temperature.
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the same direction (but the separation between them is still increasing). Not shown

here is the observation that the distance between the centers of the s and p shells

decreased with increasing temperature. We believed this is caused by the repulsion of

the s and p shells by the more degenerate d shell (expected to be 6-fold degenerate).

Finally, it is possible that the deviation from the trend at the lowest temperatures

in Fig. 4–14(c)-(d) is caused by the energy levels within the shells being no longer

degenerate at this temperature (at 4.5K, kBT ∼ 0.4 meV). This could be caused by

a deformed confinement potential or other effects.

From Eq. 2.38 and Eq. 2.37, we expect the peak maxima in the frequency shift

and dissipation to not exactly line up. This can be observed in a single voltage-

spectra and is more enhanced for peaks with a greater asymmetry between the

number of ways to add and remove an electron. In Fig. 4–14(d) we show the re-

sult for the third peak (from the right in Fig. 4–11) plotted from the same data as

the other graphs in this figure. That the differences between the positions of the

maxima of the corresponding ∆γ and ∆ω peaks agree to the theory over such a large

temperature range further supports that the thermal shifting of Coulomb blockade

peaks in Fig. 4–14(b)-(c) are caused by degeneracy, and not some other more exotic

temperature dependent process [67].

4.2.4 The Tunneling Rate, Γ

For data with thermally limited peaks, we can obtain the tunneling rate Γ. In

order to use Eq. 2.39, we first need to know which peak belongs to which energy shell

in order to calculate φ. This was done via a temperature dependence experiment

explained in the previous section. From the voltage spectra shown in Fig. 4–15, we

can measure everything else that we need in order to calculate Γ for each peak. Doing

so gives the following Γ from the first (rightmost) to the sixth peak: 70, 90, 160, 180,
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Figure 4–15: The dissipation and frequency shift spectra taken simulta-
neously over the isolated quantum dot at the top of Fig. 4–2. The parabolic
background of the frequency shift has been subtracted. The peak widths are
thermally limited for this spectra: T = 30 K, a = 0.4 nm. [67]

230, and 330 kHz. As expected, the tunneling rates increase with increasing electron

number since this corresponds to a larger VB which reduces the dot-2DEG tunneling

barrier. Note that the large parabolic background in the ∆ω has been subtracted in

Fig. 4–15.

4.3 Multiple Quantum Dot Complexes

Since the quantum dots are influenced by the electrostatic environment, intu-

itively we expect each dot to also be influenced by the charges held in near-by dots.

This dependence manifests itself in images where abrupt jumps in ring radii can be

observed whenever rings from separate quantum dots are about to intersect. When

the abrupt change is observed, we say the rings “anti-cross” at the location referred

to as the “triple-point” for two dots, “quadruple-point” for three dots and so on.

This is the vocabulary used to describe the identical features in a charge stability

diagram obtained from a transport or charge-sensing measurement.
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The relative magnitude of change in ring radius indicates how strongly the dots

are coupled. Weakly coupled, or capacitively coupled, dots mutually shift their

degeneracy points due to the Coulomb repulsion from electrons on the other dot.

This happens for dots separated by relatively large distances (tens of nanometers)

and results in a small change in ring radius. Strongly coupled, or tunnel coupled,

dots tend to be very close together (less than 20 nm) and a small potential barrier

between dots makes sharing an electron a possibility. The shared electron can tunnel

between the two dots so that its wavefunction spans the whole dot. These types

of dots are sometimes referred to as “artificial molecules”, akin to the isolated dots

being referred to as “artificial atoms.” The change between the two types of coupling

is gradual and thus hard to distinguish with certainty. One intermediate stage of

the coupling involves a higher order tunneling process where dots are capacitively

coupled but instead of sharing the same electron, an electron from each dot co-

tunnel simultaneously with the 2DEG so that one level is emptied while the level

in the other dot is occupied by a different electron [51]. Unlike that for the tunnel

coupled quantum dots, this co-tunneling process is a decoherent process and there

is no reason to assume that the spin of the new electron will be the same after

the switch. 3 In our images, we can easily distinguish between weakly and strongly

coupled quantum dots, however we need to do more analysis to be able to distinguish

3 There are other decoherence processes that the quantum dots are subjected to
which will lead to the electron losing its initial spin configuration, such as the spin-
orbit and nuclear-spin interactions. Tunnel coupled quantum dots are not immune
to such sources of decoherence. [9]
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Figure 4–16: Dissipation images taken over the same region containing
three quantum dots at -7.6 V (a) and -9.0 V (b) at 4.5 K. Images (b) and
(c) are identical. In (b) the anti-crossing of the first rings from the upper
and left quantum dots is circled and the anti-crossing of the first rings from
the right and left quantum dots is boxed. The markings overlayed on (c)
are showing the required distances needed to use Eq. 4.1 as explained in the
text. Note how the distance between the first two rings is measured as close
as possible to the change in ring radius and is not taken as a constant value
over the whole dot. Scalebar is 20 nm. [67]

between strongly coupled dots which are tunnel coupled compared to those using co-

tunneling processes. This is a topic of further study and is discussed in Chapter

6.

4.3.1 Quantifying Dot Coupling

In order to quantify the dot coupling, we need to have α for each dot so that the

dot capacitance can be known from EC . However, since we need a thermally limited

peak to determine α, and the smallest oscillation amplitude we could use prevents the

peaks from being thermally limited at 4 K, we instead compare the relative coupling

between dots. We do this for a system of three coupled dots and show that the dot

of interest is much more strongly coupled to one dot over the other.

Fig. 4–16 shows dissipation images of the same three dots taken with VB =

−7.6 V (a) and VB = −9 V (b). The smaller VB in Fig. 4–16(a) makes the three dots
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easier to identify, since each dot is surrounded by only one ring. Following the arrow

in Fig. 4–16(a), although starting in the right dot in the (nleft, nright) = (0, 1) state

(for the number n of electrons in each dot), we can move the tip into the left dot

[into the (1, 0) state] without crossing a line of dissipation. The lack of dissipation

implies that single electron tunneling has not occurred, but does not rule out higher

order tunneling processes such as a co-tunneling process. Notice, for example, that

we cannot do this with the upper quantum dot. This is an indication that the left

and right dot are much more strongly coupled than either dot to the upper dot.

We can characterize the coupling by comparing the ratio of change in ring radius

to the spacing of the first two rings for the left dot as it interacts with the upper and

right dot. In Fig. 4–16(b), these two areas of interest are highlighted with a circle

(interaction with upper dot) and a box (interaction with right dot). Notice already

that it is clear that the more weak interaction leads to less distortion of the rings.

Since we confirmed that α is linearly dependent on the distance from the dot

center, we can take an image such as Fig. 4–16(b) and measure directly off the image

the values needed to make the comparison. Note that in order for α to linearly

depend on lateral distance (as in an image) and not the total distance, which takes

into account the tip-sample gap, the measurements made off of the image need to be

at least 20 nm from the dot center. In order to be as accurate as possible, it is best

to measure the values for 2EC (i.e. the distance between the first 2 rings) as close

to the change in ring radius as possible. This procedure helps to compensate for the

discrepancy between the spacing of the first two rings over relatively large distances.

Fig. 4–16(c) shows an example where the distances are roughly indicated. From

this figure, for interactions with the upper dot, we measure the change in radius for

ring 1 as ∆Vm = 1.0 nm and the distance between ring 1 and 2 as ∆VC = 10.0 nm.
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Figure 4–17: Dissipation image shown in (a) is over the same three dots
as in Fig. 4–16(a)-(b), but at VB = -8.8 V. (b) By taking several images over
the same dots at different voltages and measuring the position of a ring with
voltage, the voltage falloff as a function of tip-dot distance can be fitted to
a line [this curve was deduced for the first ring of the left dot in (a)]. The
equation of this fit provides the conversion from distances to voltage so that
the stability diagram with axes in Volts can be created (c).

Similarly for interactions with the right dot, we measure the change in radius for ring

1 as ∆Vm = 3.8 nm and the distance between the ring 1 and 2 as ∆VC = 9.1 nm.

The ratio of these quantities is equal to the ratio of the electrostatic coupling energy,

ECm (i.e. the energy change of the dot resulting from an electron in the other dot),

and the charging energy of the dot [87]:

∆Vm
∆VC

=
ECm
EC

(4.1)

Using Eq. 4.1 and the quantities measured from Fig. 4–16(c), we calculated that

the left quantum dot is coupled approximately 4.2 times more strongly to the right

dot than to the upper dot. It is clear that if α is known, then by using Eq. 4.1,

Ecm can be directly measured. Note that the dots become more and more strongly

coupled as ECm/EC → 1 [87].
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4.3.2 Converting AFM Images to Charge Stability Diagrams

To emphasize further that AFM measurements provide as much information as

transport measurements, in this section we convert our images into “conventional”

stability diagrams. We will take the dissipation image in Fig. 4–17(a), taken at -

8.8 V, and focus on the region of anti-crossings between the left and upper dots. First

we analyze the change in α as a function of tip-dot distance, which we can deduce

by tracking the change in location of a ring over images taken at multiple voltages as

discussed in Section 4.2.1. This gives a linear relationship, shown in Fig. 4–17(b), and

this relation converts the tip-dot distances of Fig. 4–17(a) into voltages. Each dot

will have a different conversion equation, and both are required. The number of dots

determines the dimensionality of the resulting plot. For example, the axes on a two

dimensional plot corresponds to the voltages across two different dots, i.e. α1(r1)VB

and α2(r2)VB with VB being the voltage used during imaging (−8.8 V here). The

two-dimensional plot most closely resembles a conventional stability diagram where

two voltages are swept (the source and gate voltages, for example). Fig. 4–17(c)

shows the resulting stability diagram with occupation numbers for the upper (U)

and left (L) dots given in parentheses.

4.4 Verifying the Shell Structure Via Strong Coupling Measurements

Chapter 2 covered the theory for a strongly coupled cantilever and dot. One

main result was that the peaks skew away from the center of the shell as a result

of the asymmetry between the rates to add and remove electrons to the dot [53].

Fig. 4–18(a) shows the voltage spectra for three large oscillation amplitudes and

a theoretical curve of what would be expected in the weak coupling regime (i.e.

the thermally broadened peaks) at 5 K and Fig. 4–18(b) shows just the first peak

compared to the theory developed in Ref. [53]. The large oscillation amplitudes
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Figure 4–18: (a) Three spectra at different oscillation amplitudes (in
the strong coupling regime), taken over the same dot, are compared to the
theoretically displayed thermally limited peaks in black (which represents
weak coupling). With increasing oscillation amplitude, the peaks clearly skew
away from the center of the shell. (b) Comparison between strong coupling
theory and data for the first peak for different oscillation amplitudes [53].
All data shown was taken at 5 K. (b) is courtesy of Steven Bennett.

flatten and broaden the Coulomb blockade peaks. In addition, it is clear that the

peaks are skewing away from the center of the shell, i.e. the first two peaks (from

the right) skew in the opposite directions, while in the p-shell the first two and last

two skew away from each other. This implies that the dot has an s-shell consisting of

two degenerate levels and a p-shell consisting of four. This is in agreement with the

temperature analysis discussed earlier in this Chapter which was done on the same

dot. For more details on the strong coupling regime see Ref. [53].



CHAPTER 5

The Quantum Dot Environment

A
s touched upon in previous chapters, the confinement potential of the

quantum dot is influenced by its electrostatic environment. For semi-conductor

based devices, an understanding of the electrostatic environment is crucial to control

device noise, operation point, and failure rates. Further, we can imagine control-

lably manipulating the electrostatic environment to achieve a desired outcome. In

this chapter, we show that the sensitivity of electrostatic force microscopy [41,44,46]

combined with its high spatial resolution, provides a powerful way to characterize the

electrostatic environment of the sample. Although STM can be used to characterize

localized states or charge traps with high spatial resolution [88–90], this method re-

quires conductive samples and so is limited in its applicability to semi-conductors,

quantum dots, and molecules on insulators. Electrostatic force microscopy exper-

iments combined with shuttling charges between tip and sample has led to the

identification of charge traps within thick dielectrics which cannot be accessed by

STM [43–45]. Here, we use electrostatic force microscopy to characterize charge trap

noise that is originating from the shuttling of charge completely within the sample.

Charge sensing techniques, such as the AFM technique described herein, have the

88
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added benefit of the noise not being influenced by the electrodes, which complicates

the analysis. Other examples of charge sensing techniques that have been used to

characterize charge noise are quantum point contacts [10,91], single electron transis-

tors [12,13], and scanning single electron transistors [27], but these methods currently

do not possess the high spatial resolution of AFM.

We focus on generation-recombination noise [92], induced through shining super-

bandgap light on a semi-conductor surface and measuring the generation-recombination

time of the charge carriers near the surface. In principle, the technique demonstrated

here can detect the noise from any fluctuating charge mechanism (provided the mi-

croscope is sensitive enough to measure the charge fluctuation and the acquisition

time is not affected by drift).

5.1 Generation-Recombination Noise In Semiconductors

Electrical noise can reduce or enhance the current through micro or nano-sized

restrictions in channels since the usual culprits, charge traps, not only significantly

modify the current flow through the channel but in addition locally gate the device.

This is actually the main principle used in the design of a quantum point contact [10],

and is similar to multiple quantum dots gating each other as we have seen in Chapter

4. A fluctuating charge near a quantum dot will also affect its ability to stay in a

coherent state, which can be crucial for some applications such as maintaining a

specific charge configuration of qubits in a quantum computer [9]. Photovoltaic

devices also depend highly on the number of traps present, especially as devices

continue to shrink in size, and recent AFM studies used EFM to highlight regions

of photoinduced charging and to characterize the quantum efficiencies of polymer

blends [93]. The quantum dots and the photovolatics both interact with light, but

in opposite ways; the bound exciton created by light absorption needs to efficiently
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separate in photovoltaic devices so that a current can be created, whereas in the

quantum dot the exciton remains strongly bound due to quantum confinement and

the charges cannot escape the depth of the potential well of the quantum dot and so

recombine locally. 1 Both of these processes can be identified, through confirming

the existence or lack of generation-recombination noise, by detection of continuous

charge trapping and de-trapping. For example in photovoltaic devices the presence

of traps often means that the charge carriers are recombining before they can arrive

to the collector electrode, which is usually undesirable.

By choosing to study G-R noise on a semiconductor sample with quantum dots,

we simultaneously demonstrate the detection of electron-hole pair separation and

quantum confinement within the quantum dots, through the presence and absence

of generation-recombination noise [94]. The fact that the noise was present over

some regions of the sample but not others (i.e. over the quantum dots) allowed us

to rule out the possibility that the noise was being caused by the influence of the

laser on the cantilever (e.g. laser instabilities, laser heating, etc.), and additionally

allowed for a demonstration of our spatial resolution. The main sample studied had

the same growth parameters as the sample discussed in the previous chapter [81]:

a 20 nm InP insulating layer separating surface self-assembled InAs quantum dots

and the buried 2DEG. However, we note that control experiments on gold, silicon

dioxide, and the same InP sample without InAs were all performed. Similar noise

results to those presented herein were found on the InP sample, but the noise was

absent on the gold and silicon dioxide sample. The absence of the noise in these last

1 This is assuming that the quantum dot is not capped with a material which
favours charge-pair separation.



5.1 Generation-Recombination Noise In Semiconductors 91

Figure 5–1: Schematic of the band bending of the InP sample. (a) Initially
bands are bent upwards due to negative charge at the surface, but super-
bandgap irradiation leads to holes traveling to the surface and recombining
with negative charges to relax the bands. (b) Generated charge pairs are
trapped in the potential well of the quantum dot where they recombine. [94]

two systems is expected as the gold does not undergo charge-pair separation through

light absorption and the photon energy was not enough to span the large band-gap

of the SiO2 (9 eV).

The G-R noise results from the generation of electron-hole pairs upon super-

bandgap laser irradiation, the charges then move in the electric field arising from

charges trapped in surface states. Although the sample is neutral, near the surface

there is upward band-bending due to excess negative charge being trapped in surface

states, establishing a built-in electric field within the sample. This field separates

generated electron-hole pairs and the holes recombine with these surface charges.

This leads to large fluctuations in the surface charge which we are detecting via the

electrostatic force[Fig. 5–1(a)]. Free electrons nearby the quantum dot will tunnel

into the potential well of the dot, while free holes drift into the dot leading to recom-

bination of charge pairs within the potential well of the dot [94]. The observations

described in the following sections of this chapter elaborate more on this process and

provide convincing evidence that this is indeed the observed mechanism.

5.1.1 Experimental Setup

After the 1550 nm laser was installed [73], changes to the microscope were made

so that the previous laser, 780 nm wavelength, could be used to shine light onto the
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Figure 5–2: Schematic showing the cantilever positioned over the sample
surface and the two fiber optics. The 780 nm light shines on the surface,
while the 1550 nm light (invisible) shines onto the backside of the cantilever
for the interference signal for position detection. We know that the cantilever
does not block all of the light from this laser, as the resistance of the 2DEG
decreases when this laser is on. However, stray light can be minimized by
optimal cantilever-fiber alignment and reducing the gap between fiber and
cantilever as much as possible.

sample surface. A schematic of the setup is shown in Fig. 5–2. The higher energy

of the 780 nm laser (1.6 eV) exceeds all of the bandgaps of the InAs/InP sample.

For example, at room temperature, the bandgap of InP is 1.35 eV, while for InAs it

is 0.36 eV, both of which monotonically increase with decreasing temperature with

an approximate increase between 0.05-0.1eV at 0 K [79]. We used an intensity of

≈ 150 nW/mm2 for the 780 nm light. The thinness of the sample ensures that the

vast majority of light completely penetrates beyond the 2DEG. Fig. 5–3 shows the

graph that we use to convert the laser currents, read off of the laser power supply,

into laser powers. We placed a photodiode on the AFM sample stage (a Hamamatsu

Si PIN photodiode S6695-01) and approached it to the cantilever in order to mimic

the experimental conditions of sample illumination. Fig. 5–3, however, only gives

an estimate of the power since the fiber optic needs to be reconnected for each

experiment, resulting in varying coupling losses. For this reason, the laser currents
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Figure 5–3: Graph for the laser current to laser power intensity. The
first quadrant of the photodiode was underneath the tip, and approached to
the sample (black) and the values on a nearby quadrant were also recorded
(green) to give a feeling for the spatial variation of the laser intensity. Then,
the photodiode was retracted approximately 1 mm away from the tip and
the values were recorded for quadrant 1 (red) to show a distance dependence
of the light intensity.

are often cited where one might expect to be given the laser power. Performing our

experiments at a laser intensity where the bands have relaxed makes these differences

in laser power less of an issue. The diode is 1 mm2 in area, so the intensity of the

laser can be read off of the y−axis in Fig. 5–3 in units of nW/mm2.

The AFM is operated in self-oscillation mode. We use a Si cantilever from

Nanosensors (PPP-NCLR) with a 10 nm Ti layer adhesion layer and 20 nm Pt layer

sputter coated onto the cantilever. The experiments are done at low temperature

(either 77 K or 4.5 K) because we do not detect an increase in noise with laser

irradiation at room temperature. The reason for this is two-fold. Firstly, the thermal

noise of the cantilever is larger, and secondly an increase in thermal energy of the

sample electrons already allows for more background charge fluctuation. These two

effects make it difficult to detect a change from the laser irradiation.
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5.1.2 GR-Noise Imaging and Spectra

By comparing the electrostatic topography images of the surface, it is easy to

observe the laser induced noise as the InP surface is covered with streaks in the fast

scan direction. We emphasize here that the images taken via a standard topography

approach (i.e. with constant ∆ω) are not representative of the topography of the

surface since an applied VB also results in electrostatic features showing up in the

image. Fig. 5–4(a)-(b) compares images with laser off and on. The images give an

indication of the uniformity of the noise over the wetting layer. We can learn more

about the dynamics of the noise by positioning the cantilever over one location,

shutting off the feedback, and collecting data on the frequency shift of the cantilever

as a function of time. Fig. 5–4(c) compares an example of such a spectra taken over

the wetting layer for 10 s. with the laser both on and off, to one taken over a quantum

dot [Fig. 5–4(d)]. Since it is rare to see the noise in the dissipation channel, only the

power spectral density (PSD) of the frequency shift is plotted and shown in Fig. 5–

4(c)-(d). Since G-R noise results from the detection of several processes occurring

randomly but with a characteristic time constant, by converting the time trace into

the frequency domain via a Fourier transform, we can characterize this time constant

by measuring the corner frequency of the PSD [95]. Since G-R noise is described by a

Lorentzian frequency response, we expect the PSD to have a slope of approximately

-2 at higher frequencies and to level off at low frequencies. Both of these features

are shown in the PSDs in Fig. 5–5, where several PSDs generated from 600 sec.

frequency shift acquisitions taken over the wetting layer are shown for different laser

currents. Once the laser current exceeds 45 mA, the spectra reproduce themselves

well and the corner frequency can be estimated. Fig. 5–6 shows two spectra taken

at 2 V with 600,000 points over 600 seconds. The corner frequency of the data in
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Figure 5–4: AFM Topography images taken at VB = 2 V and −31.66 Hz
at 4.5 K with laser off (a) and on (b). Noise from laser irradiation is ob-
served in the topography image as streaks in the fast scan direction. PSD
spectra taken over the wetting layer (c) and a quantum dot (d) at the circled
locations in (a). The PSD spectra were created from 10 sec. time scans
of the frequency shift while the distance feedback was off, each contains
10,000 points. Although the presence of the laser clearly affects the noise
over the wetting layer, the noise over the quantum dot is unaffected by the
laser irradiation. [94]
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Figure 5–5: PSD of the frequency shift over the wetting layer for increasing
laser currents. The frequency shift data consisted of 600,000 pts. and was
collected for 600 s with VB = 2 V at 77 K. The frequency shift data is treated
with a Hamming window and the resulting PSD is subjected to a 15pt moving
average.

Fig. 5–6 is estimated from the frequency at which the two lines in Fig. 5–6 cross.

This gives a corner frequency of approximately 0.3 Hz, indicating a time constant

of roughly 0.5 seconds, representing the average time with which the charge carriers

are recombining.

Fig. 5–7 shows the PSD at different temperatures for data taken over the wetting

layer, for the laser on and off at VB = 2 V. The data taken at room temperature

(“RT”) consists of only 10 s and 10,000 pts, while the other two have 300 s and

300,000 pts. At room temperature, the tip position is considerably more unstable,

and drift and piezocreep can make it difficult to keep the tip in the same position

over the sample, making long time data acquisitions difficult. However, it is clear

from Fig. 5–7, that the laser does not change the noise over the sample at room

temperature. More data needs to be collected before we are able to characterize the
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Figure 5–6: PSD of the frequency shift over the wetting layer for two sets
of data. The frequency shift data consisted of 600,000 pts. and was collected
for 600 s, at 77 K with VB = 2 V. The corner frequency is estimated from
where the slope of -2 intersects the flat region. The corner frequency is
approximately 0.3 Hz. The frequency shift data is treated with a Hamming
window before preforming the PSD and the resulting PSD is subjected to a
15pt moving average.



5.1 Generation-Recombination Noise In Semiconductors 98

Figure 5–7: PSDs taken over wetting layer for multiple temperatures. All
data taken with VB = 2 V.

noise as a function of temperature (e.g. measuring the corner frequency as a function

of temperature). The data should be taken over a longer time period so that there

are more points in the region of interest, and many locations over the sample should

be measured to rule out spatial variations leading to a change in the corner frequency.

The electric field in the sample resulting from the initial upward bending due

to excess negative charge on the surface is modified by the bias voltage. Positive VB

(strictly speaking, VB > VCPD) complements the electric field of the sample, enhanc-

ing the bandbending and electric field, which more efficiently spatially separates the

photo-generated charge carriers and leads to more charge fluctuations at the surface

once the laser is turned on. Conversely, the electric field from negative VB reduces

the bandbending and so fewer fluctuations are observed. Fig. 5–8(a) shows these

characteristics in the frequency shift as VB is swept with both the laser on and off.

When the laser is on, the net flow of minority carriers to the surface reduce the VCPD

(i.e. the difference between the work functions of the sample and tip is increased by

the relaxation of the band bending) [96]. In addition, there is a larger electrostatic

force between the sample and negative tip (corresponding to positive VB) when the

laser is on because of increased flow of positive charge to the surface [93]. Little

difference between the laser on and off curves for negative VB suggest that the bands
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Figure 5–8: The frequency shift parabola resulting from sweeping VB
undergoes two changes with laser irradiation (a). First, the location in VB
where the apex occurs shifts to a more negative value, and secondly the
parabola curvature increases. (b) Time traces (200 sec., 200,000 points) over
the same location as (a) are shown for the laser on and off for VB = 2 V and
VB = -3.5 V. It is evident from both (a) and (b) that the measured noise is
larger for VB > VCPD. The corresponding PSD of the full 600 sec. which is
partially shown in (b) is graphed in (c). Data taken at 77 K.

are already mostly flattened by the applied bias alone. The 200 s. time traces shown

in Fig. 5–8(b) are taken over the same location as the parabolas in Fig. 5–8(a). Even

from the time traces, it is apparent that the noise is greater at positive voltages.

The corresponding PSD curves are shown in Fig. 5–8(c) using the 600 s. time traces

[Fig. 5–8(b) is showing only 200 s. of these 600 s. acquisitions].

We can also estimate the spatial resolution of the noise by taking advantage

of the lack of G-R noise over the QD and observing the onset of the noise as we

approach the wetting layer [94]. Fig. 5–9 shows an image of a dot taken with the

laser off, and the PSD curves with the laser on, taken over each location marked in

the image. As we move off of the dot in 20 nm steps, we see a significant change

in the noise in only one step, indicating a resolution better than 20 nm. It would

be interesting to see a 2D plot of the amplitude of the noise over the entire sample

surface, but automatic data collection is recommended since it would take several
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Figure 5–9: Topography image of a quantum dot where PSD spectra were
taken at each spot labeled on the topography. The PSD spectra were made
from 10,000pts frequency shift data collected over 10s at 77 K and 2 V. A
clear increase in the noise is discernible between 20 nm steps. [94]

hours to do (for example, an image comprised of 50 × 50 pixels at 10 sec. will take

7hrs for the data collection alone).

5.1.3 Time Constant For Band-Bending

The time-spectra of the previous section were collected by placing the cantilever

over one location, turning on the laser, and waiting for 5-10 s. before recording the

time trace of the frequency shift. The wait time was crucial to ensure that enough

of the minority carriers (holes) had migrated to the surface, so that we would be

measuring solely the recombination process and not this migration. Fig. 5–10 shows

a typical example of a time trace during which the laser was turned on and back off

again. In such a time trace we see that the laser causes a large change in the overall

electrostatic force (i.e. a large change in frequency shift), and it is also obvious that

the initial process of “charging” the surface is much faster than “de-charging”, where

we consider the charging process as the movement of charge to the sample surface
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Figure 5–10: Time spectra for VB = 1.0 V. The laser is initially off, but is
turned on briefly and off again. The increase in low frequency noise is clearly
visible while the laser is on. The frequency shift takes a relatively long time
to return to its initial value, here we fit it to an exponential decay. For this
spectra, we obtain a better fit to a sum of exponential functions with time
constants of ∼ 14 s. and ∼ 2 s.

caused by the generation of free carriers. The two time scales of the data in Fig. 5–

10 might represent the abrupt decrease in flow of minority carriers (due to the laser

shutting off) while the longer decay rate may be representative of the decharging of

the sample surface. More data is needed to get a better estimate of this value, and

to understand the voltage dependence, temperature dependence, and the effect of

the laser power on this time constant. The long “de-charging” process makes it very

important to wait between time-spectra in order to give the sample enough time to

reinitialize, however the wait time could be vastly reduced by simply changing the

voltage to the opposite polarity corresponding to roughly the same frequency shift

(all done with the feedback off to prevent the feedback from crashing the tip into the

sample) which forces the de-charging.
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5.1.4 Different Laser Powers and Kelvin Probe Force Microscopy For
Surface Photovoltage Measurements

The surface photovoltage (SPV ) is equivalent to the light induced, negative

change in contact potential difference between two materials, i.e. SPV (P ) = VCPD(P )−

VCPD(0), for laser power P . We can measure this in one of two ways; either with an

EFM approach or with Kelvin Probe Force Microscopy [83, 97]. The latter method

is discussed in the following paragraph. Recall from Eq. 2.18 that the minimum in

the electrostatic force occurs at the applied voltage where the tip-sample contact

potential difference is compensated for or canceled. This manifests itself in the fre-

quency shift parabola obtained by sweeping the sample voltage, where the parabola

apex occurs at this value. Thus, by sweeping the sample voltage at several light

intensities, this minimum will shift towards a new value with increasing light inten-

sity [recall Fig. 5–8(a)]. This shift is a measure of the band bending resulting from

the migration of minority carriers to the sample surface and it eventually reaches

an equilibrium when the bands are flattened, then there is no longer a space charge

layer since there are enough minority carriers to recombine with the surface charge

and null the built-in electric field. We took care to perform our G-R experiments in

the laser intensity regime where the bands are flattened.

The Kelvin Probe Force Microscope [83] applies a modulated bias voltage be-

tween tip and sample and uses an additional lock-in to track the magnitude of this

signal. This signal is used to determine the bias voltage needed to cancel the VCPD

between tip and sample. This voltage is applied to the sample and tends to improve

imaging resolution of the topography because it nearly cancels the electrostatic force

component, and in addition simultaneously provides an image of the VCPD varia-

tions. Unlike in EFM where the VB is affecting the bandbending of the sample, the

Kelvin Probe Force Microscope approach has a minimal effect on the bandbending
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Figure 5–11: Logarithmic dependence of surface photovoltage on laser
power.

since the tip and sample have a minimized contact potential difference. We per-

formed the same experiment with the Kelvin Probe Force Microscope as with the

EFM technique, but this time measured the compensating voltage as a function of

time. As with the frequency shift in the previous case, we observed increased noise

in this voltage channel when the laser was on. For different laser powers, we can use

the Kelvin Probe voltage to plot the resulting average change in the surface photo-

voltage and observe the characteristic logarithmic dependence on laser power that is

expected for an SPV measurement (Fig. 5–11) [98]. In this experiment, the modu-

lated voltage had a 0.6 Vrms amplitude and 1 kHz frequency, and the time constant

of the Stanford Systems lock-in was 300 µs.



CHAPTER 6

Outlook and Conclusions

A
FM, and in particular electrostatic force microscopy, is a useful

tool for measuring the energy levels of quantum dots and characterizing noise

caused by charge fluctuations. The main benefit of using AFM over conventional

approaches is the spatial resolution and the ability to link the topography to other

information (e.g. force information, charge noise, etc.). Using the AFM to probe

electrostatic properties will not only aid in device diagnostics but also in furthering

our understanding of physics at the nanoscale; this was demonstrated in particular

for semi-conductor quantum dots. The results that we have obtained using the AFM

have motivated us to pursue a number of other energy-level probing experiments and

these are discussed below.

6.1 Outlook: Furthering our Understanding

6.1.1 Magnetic Field For Verifying Shell Structure

Electron addition spectra as a function of magnetic field should produce a Fock-

Darwin [99,100] spectra for our quantum dots. The Fock-Darwin spectra is the name

given to the electron addition spectra versus magnetic field for a disk-shaped quantum

dot with parabolic confinement potential having two electrons in the first energy

104
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shell, four in the second, six in the third, and so on. It does not account for many-

body interactions [101]. Since the energy levels are shifted with magnetic field due

to the electron angular momentum (and also the Zeeman effect), from such spectra

we can directly label the quantum numbers of each electron and thereby determine

the shell structure. As we have a superconducting magnet installed capable of 8 T,

we intend on carrying out this experiment which would close the loop on the shell

structure analysis. However, it will be a challenging experiment mainly because of

the increased noise from the magnet power supply in combination with the magnetic

components of the microscope moving with magnetic field. The Fock-Darwin energy

levels are described by [4, 101]:

Enl = (2n+ |l|)~
√
ω2

∆E +
ω2
c

4
− 1

2
l~ω∆E (6.1)

Where n is the radial quantum number and l is the angular momentum, ωc = eB/m∗

is the cyclotron frequency in magnetic field B for effective mass m∗. For InAs,

m∗ = 0.028m0 [79] for free electron mass m0. Finally, ~ω∆E = ∆E is the energy

separation between shells. The Zeeman splitting of the energy levels is:

EZ = ±0.5gµBB; (6.2)

With g being the g-factor and µB the Bohr magneton. Fig. 6–1(a) shows the theoret-

ically calculated Fock-Darwin and Zeeman splitting as a function of magnetic field

for an InAs quantum dot with ∆E = 11 meV similar to the dot studied in Chapter 4.

Notice in Fig. 6–1(a) that the Zeeman splitting is responsible for the noticeable spin

split of the energy levels. In this calculation, the g-factor for InAs was taken as the

bulk value of g = −14.7, but the measured g-factors for InAs quantum dots can be

substantially different than that value. In Ref. [102], experiments on InAs quantum
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Figure 6–1: (a) The Fock-Darwin and Zeeman energy level splittings up
to 4 T are plotted for an InAs dot with ∆E=11 meV. In (b) the charging
energy is added to each curve. The first two energy levels of each shell are
coloured blue, the next two green, and the next two red. The energy levels
of the second shell are plotted with dashed lines to make it easier to tell the
levels apart.

dots formed in nanowires found the absolute values of the measured g−factors to

be between 2 − 18 and depended on a number of factors, with smaller dots having

the smaller values. However, one reason for such a large range of values is partially

due to the difficulty in accessing several single dots (the experimental technique used

required electrodes to be attached to the wire). It would be interesting to measure

the g-factor of several individual dots to determine the variation in this value for

our dots, but the magnitude of the value used here is almost certainly too large. In

Fig. 6–1(b) the same curves are plotted as in Fig. 6–1(a), but now we incorporate

the charging energy, EC = 30 meV, which spaces out each of the curves. Our data

will look similar to Fig. 6–1(b).

The radius of the Fock-Darwin eigenstates is proportional to 1/B and so increas-

ing the magnetic field shrinks the electron wavefunction. At high magnetic fields, the

Fock-Darwin levels group into the free electron Landau levels, with Landau quantum
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number n + (|l| − l)/2 [101]. In Fig. 6–1(a) the lower 8 levels are grouping into the

first Landau level. When Coulomb interactions are considered, the decrease in elec-

tron wavefunction with increasing magnetic field leads to a higher concentration of

electrons on the dot, increasing the Coulomb energy. Since the wavefunction radius

increases with angular momentum, it eventually becomes favourable for the electron

to increase its angular momentum to reduce the Coulomb energy [101]. Since the

radius of the wavefunction affects the dot properties and how strongly it couples to

nearby dots, we may observe this effect indirectly in our measurements.

6.1.2 Excited State Spectroscopy

Now we consider oscillating the cantilever with such a large amplitude that a

single electron (since we are in the Coulomb blockade regime) can be given enough

energy to enter into an excited state of the dot. In other words, an electron that

would have entered the s-shell enters the p-shell. This is analogous to the transport

measurement done in [6], where a quantum dot was essentially coupled to only one

of the two electrodes and a square pulse wavetrain injects an electron into, and

then out of, the dot. The size of the pulse was slowly increased from the value

required for overcoming the charging energy but not to the point where it reached

twice the charging energy, and so only one electron is able to enter the dot. In

this intermediate region, the pulse becomes large enough that an excited state also

becomes available for the electron to tunnel into (as opposed to solely the ground

state). The availability of two states changes the tunneling rate of the electron and,

since their measurement technique is sensitive to the tunneling rate, they observe

this change in their signal.

In our experiment, by increasing the oscillation amplitude access to more energy

levels is provided for the incoming electron. Allowing for tunneling into excited states
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Figure 6–2: (a) A bump on the Coulomb blockade peak is an indication
that the cantilever oscillation amplitude is large enough to permit the electron
to enter an excited state of the dot. (b) Theoretically, taking several curves
at increasing oscillation amplitudes and plotting the derivative of the peak,
the onset of this bump is obvious (dashed line) and the splitting of the shells
(∆sp since this is the first peak) can be determined from the spacing between
the dashed line and the line marking the onset of the peak. An example of
one slice of the peak derivative at a larger amplitude is given in the inset. [53]
Image is courtesy of Steven Bennett.

increases the dissipation, and a small “bump” on the dissipation peak appears [an

example for the first peak is shown in Fig. 6–2(a)]. Taking multiple curves as a

function of oscillation amplitude allows us to determine the splitting between energy

shells [Fig. 6–2(b)]. [53]

Preliminary data indicates that we may have observed this phenomena, but

having few dissipation-voltage spectra at several amplitudes makes this bump on the

dissipation peak difficult to identify, and so to be sure this experiment needs to be

done for several oscillation amplitudes. The type of dot that one wants to study

using this technique is one with a large EC so that the peaks are spaced out enough

that we can use relatively large oscillation amplitudes to observe this bump before

the peaks smear into each other.
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6.1.3 Additional Dissipation Features

While most AFM experiments ignore the information in the dissipation channel,

our group spends a lot of time analyzing this information and have found a number

of observations which are interesting but have not been previously reported. Two

such observations are expanded on below.

Enhanced Contrast In Dissipation

Two separate experiments had a single peak in the dissipation-voltage spectra

which was not associated with any feature on the sample, and in particular was

not associated with the quantum dots, and interestingly when the voltage was set

near to this peak in dissipation we could obtain very impressive spatial resolution

in the dissipation channel (compared to the resolution of all of the channels of our

microscope). Fig. 6–3(a) shows the dissipation−VB spectra taken over the wetting

layer, with a sharp jump/peak in dissipation around 1 V. While taking an image at

VB = 1 V the dissipation contrast abruptly changes, as emphasized in Fig. 6–3(b) by

an arrow (slow scan direction is downwards). Fig. 6–3(c) and (d) are the dissipation

and simultaneously recorded electrostatic topography images taken afterwards at

VB = 1.2 V. Here, the dissipation images are taken with the distance regulating

feedback on, i.e. at constant frequency shift. The images were repeatable after this

contrast appeared in Fig. 6–3(b). The resolution over the quantum dot is especially

impressive in Fig. 6–3(c) as usually we only obtain an image of that quality by

imaging in the repulsive force regime. Notice that many of the features in Fig. 6–3(c)

can also be identified in Fig. 6–3(d) which is also an indication that the dissipation

image is recording electrostatic information. In the second experiment, the peak in

the dissipation occurred at a different voltage for a spectra taken over the wetting
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layer [Fig. 6–4(a)], however we still obtained interesting features in the dissipation

images, as shown in Fig. 6–4(b).

Figure 6–3: (a) Dissipation-voltage spectra showing an anomalous peak
around 1 V, taken over the wetting layer. (b) Dissipation channel recorded
with VB = 1.2 V and ∆ω/2π = −15.8 Hz, during the scan the dissipation
image abruptly changed in contrast (slow scan direction is downwards). (c)
Dissipation channel taken with VB = 1.2 V, and ∆ω/2π = −15.84 Hz and
the simultaneously acquired electrostatic topography image in (d). Images
taken at 4.5 K with 8 nm oscillation amplitude. All images are 500 by 500
nm.

The cause of this peak is unknown and we speculate that it is tip (as opposed

to sample) related because of the irreproducibility of the dissipation peak location

and because the presence of the peak is rare. As the images are reproduced over

the sample surface, it seems we are imaging some feature of the sample. These

two observations indicate that the tip is ultra-sensitive to charge, for example in

surface states or the bulk, potentially due to something on the tip which fluctuates

in response to charge variations over the sample surface.

Imaging Impurities

As mentioned in Chapter 4, we occasionally observe rings that are not located

near a quantum dot. Most often, we are only able to discern a single ring, and even

when the voltage is increased further a second ring is not resolved. It is possible that

we are observing the ionization of impurities in this case. An STM study observed
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Figure 6–4: (a) Dissipation-voltage spectra, showing a peak in dissipation
around −4 V. (b) Constant height dissipation image taken over the wetting
layer (area of a quantum dot sample where there are no quantum dots) with
VB = −4.3 V. Image is 700 nm by 700 nm. Data taken 4.5 K with 4 nm
oscillation amplitude.

single rings over silicon donors in a GaAs sample which they concluded were caused

by the ionization [103]. Another possibility is the formation of quantum dots due to

small regions of InAs caused by incomplete surface coverage of the wetting layer [104],

or even quantum dots formed in the 2DEG due to variations of the electrostatic

landscape of that location [27]. We need to acquire more data on these features, but

the dissipation signal of these features is especially weak, even for smaller amplitudes,

and this makes it difficult to characterize these rings. Fig. 6–5 shows the evolution

of such a ring for increasing VB. The ability to locate, characterize, and potentially

even utilize, single impurities is an interesting avenue which is being pursued with a

number of experimental techniques.

6.1.4 Coupled Quantum Dots

Further investigation of the coupled dots is definitely needed, not only to advance

our understanding of the physics of the coupling in quantum dots and molecules but

since coupled quantum dots have important potential applications (e.g. as qubits in

a quantum computer). In particular, it may be possible to detect a signature of the

tunnel versus co-tunnel coupling mechanism.
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Figure 6–5: (a) Electrostatic topography of quantum dot sample, taken
over the same area as Fig. 6–4(a), with ∆ω/2π = −27.8 Hz. and VB = 2.5 V
as marked on the image. An InP step-edge is in the bottom left corner. All
images are over the same area and are 700 nm by 700 nm. (b) - (e) are
constant height dissipation images showing the spreading of a single ring at
the center of the images. In (e) a white arrow points to another single ring
that is showing up. These are different from the rings associated with the
InAs islands, which show up in the vicinity of the islands at negative voltages.
Images taken at 4.5 K with 4 nm oscillation amplitude.

Fig. 6–6 highlights some of the features of coupled quantum dots which we are

going to look into further. Fig. 6–6(a) and (d) are the simultaneously obtained

frequency shift and dissipation images taken in constant height imaging mode. In

Fig. 6–6(a) there are some areas of increased frequency shift in the image that occur

when rings from two separate dots anti-cross (it is much easier to see these areas

on the electronic version of the thesis rather than the printed version). This is

emphasized by subtracting the background frequency shift which is influenced by the

dot topography [Fig. 6–6(b)], and then redisplaying Fig. 6–6(b) with circles placed

over the areas of increased frequency shift. Arrows in Fig. 6–6(b) point to areas

of elongated increases in frequency shift. The dots and arrows are then overlayed

on the dissipation image in Fig. 6–6(d). The topography of this quantum dot is

the inset in Fig. 6–6(c). An increase in frequency shift that is not mirrored in the

dissipation indicates that the cantilever has detected a faster tunneling rate in this

region (recall Eq. 2.39 and Fig. 2–2). Although we cannot say for certain, this could

be the detection of tunneling between the dots since the tunnel barrier between dots



6.1 Outlook: Furthering our Understanding 113

Figure 6–6: (a) Frequency shift image of an InAs island. Sharp increases
in the frequency shift are visible. (b) Same image as (a) but with the back-
ground subtracted. (c) Peak-like increases are marked with circles and line-
shaped increases marked with arrows. The inset in (c) is showing the to-
pography of the quantum dot. (d) The simultaneously acquired dissipation
image, with the same overlayed circles, showing that the peaks in frequency
shift are occurring at the triple points and the lines occur along larger inter-
sections of the rings. Both images acquired at 4.5 K, with 0.4 nm oscillation
amplitude. Scalebar is 20 nm.

should be smaller than the InP tunnel barrier, which would lead to a faster tunneling

rate. Conversely, the tunneling rate of co-tunneling events is much slower than the

tunneling rate of single electron processes, by a factor RK/RT where RK = h/e2 and

RT is the tunneling resistance [51]. We do not have many examples of the sharp

increases in frequency shift such as those observed in Fig. 6–6(a), since initially we

were focused on characterizing single isolated quantum dots, but we have observed

similar features in a small subset of other coupled quantum dots.

More theoretical analysis needs to be done before we know what to expect

between capacitively, tunnel, and co-tunnel coupled dots. We are continuing to

collaborate with Dr. Clerk’s condensed matter theory group at McGill in order to

clearly distinguish between them.
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6.1.5 Other Quantum Dot Samples

The experiments we have demonstrated on quantum dots can be applied to

several other types of interesting samples. Our next candidate for Coulomb block-

ade studies will be a capped quantum dot sample. Optical measurements require

quantum dots to be capped and so to be able to compare our results with those

measurements we need to characterize the energy levels of the capped quantum dots.

We studied one capped sample and observed rings in the dissipation [Fig. 6–7(a)

shows the topography and (b) the dissipation image at VB = −7 V], but the density

of quantum dots was fairly high and it was difficult to isolate the rings from just one

dot. Further, the rings did not behave the same way as the rings from the uncapped

quantum dot sample. The ring shape seemed relatively unaffected by temperature

[Fig. 6–7(c)] or changes in the bias voltage. Although more rings became visible with

a larger VB, the diameter of the rings seemed unaffected, and as the temperature was

increased the rings did not noticeably thermally broaden. Currently, we do not have

an explanation for these results, however we note that the density of the quantum

dots is very high on this sample and perhaps we are observing a regime where many

body interactions are prevalent. We now have a sample with a lower density of dots,

and we hope to be able to isolate one for study.

We are also interested in investigating gold nanoparticles as quantum dots in

controllable architectures so that we can investigate dot coupling more effectively.

Gold nanoparticles connected via specific lengths of DNA are given to us through

a collaboration with Dr. Sleimann in the Chemistry department at McGill. These

samples separate the gold nanoparticle quantum dots at preselected distances, pro-

viding an excellent platform for investigating different dot coupling regimes and how

to characterize them with the AFM. These kinds of studies pave the way for devices
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Figure 6–7: (a) Topography image of capped quantum dot sample. Im-
age is 1 µm2, ∆ω/2π = −0.4 Hz, using Kelvin Force Probe Microscopy
(Vac = 0.6 Vrms with 1 kHz frequency and 10 ms time constant for the lock-
in. (b) Constant height dissipation image taken over the same area as (a)
with VB = −7 V. (c) Series of constant height dissipation images for increas-
ing temperature (all images are 400 nm × 400 nm taken with VB = −7 V).
Dissipation has the same colour scheme as previous figures, but a colourbar
is omitted since it was difficult to subtract the background. Dissipation in
these images is approximately 1.5 Hz. All images took 18 min to complete.
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based on larger scale self-assembled architectures. The size of the gold nanoparit-

cles can be controlled relatively well and dots can be made small enough that the

Coulomb blockade regime is accessible at room temperature.

6.2 Conclusions

The main results of the work presented in this thesis are concisely summarized

below.

6.2.1 Quantum Dot Spectroscopy

From the thermally broadened linewidth of the Coulomb blockade peaks, we

were able to extract the lever arm, α, which allowed us to estimate EC and ∆E. By

measuring the position of the dissipation peak maxima as a function of temperature,

we were able to extrapolate values for EC and ∆E at T = 0 K. Additionally, we

demonstrated the first example where the shell structure of a quantum dot was

verified via a temperature experiment. By increasing the cantilever-dot coupling

through increasing the cantilever oscillation amplitude, we moved from the weak to

the strong coupling regime. In this regime, we demonstrated for the first time that the

shell structure can also be verified simply by sweeping the sample voltage. Increasing

the coupling even further allowed for the electron to enter a higher energy shell of the

dot. Theoretically this leads to a small bump on the dissipation peak which is within

our resolution to observe and in a future experiment we will look for this feature.

The success of this work relied heavily on the theoretical model developed by Steven

Bennett and Dr. Aashish Clerk which yielded an excellent agreement between theory

and experiment. Dissipation measurements are still in their infancy within the AFM

community, making the explanation of where the dissipation is coming from all the

more valuable.
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6.2.2 Quantum Dot Environment

We detected generation-recombination noise resulting from super-bandgap ir-

radiation of a semi-conductor surface. From our measurements, we were able to

deduce that the sample bandstructure was initially bent upwards at the surface due

to negative charges which established an electric field within the sample. Super-

bandgap irradiation created electron-hole pairs which were separated in this electric

field with the holes moving towards the sample surface and relaxing the bands. We

were able to characterize the generation-recombination noise time constant by taking

the power spectral density of the cantilever resonance frequency shift as it reacted

to charge fluctuations near the surface. A second time constant, that of the charge

redistribution after the light was shut off, was also demonstrated.

To ensure that we were in the regime where the bands were nearly relaxed,

we used Kelvin Probe Force Microscopy to measure the surface photovoltage as a

function of laser power to find the laser power at which the surface photovoltage was

saturated. Also, using electrostatic force microscopy we looked for reproducibility

of the power spectral density curves once a certain laser power had been reached to

verify we were in this regime.

The confinement potential of the uncapped self-assembled quantum dots did

not allow for charge-pair separation, resulting in no fluctuations in overall charge

with super-bandgap irradiation. This property was used to determine the spatial

resolution of the technique, demonstrating a resolution better than 20 nm.

Since these results are, to our knowledge, the first measurements of generation-

recombination noise using an AFM, we expect more of these measurements to be

preformed in the future. In particular, with samples that rely heavily on light irra-

diation and the generation of excitons, namely photovoltaics. It would be nice to
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see the technique used for locating recombination centers either in a bulk sample

or within a molecule, and to observe spatially varying noise, for example over the

wetting layer.
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